energy equation
Recently Published Documents


TOTAL DOCUMENTS

1029
(FIVE YEARS 149)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Vol 934 ◽  
Author(s):  
S. Noroozi ◽  
W. Arne ◽  
R.G. Larson ◽  
S.M. Taghavi

The centrifugal spinning method is a recently invented technique to extrude polymer melts/solutions into ultra-fine nanofibres. Here, we present a superior integrated string-based mathematical model, to quantify the nanofibre fabrication performance in the centrifugal spinning process. Our model enables us to analyse the critical flow parameters covering an extensive range, by incorporating the angular momentum equations, the Giesekus viscoelastic constitutive model, the air-to-fibre drag effects and the energy equation into the string model equations. Using the model, we can analyse the dynamic behaviour of polymer melt/solution jets through the dimensionless flow parameters, namely, the Rossby ( $Rb$ ), Reynolds ( $Re$ ), Weissenberg ( $Wi$ ), Weber ( $We$ ), Froude ( $Fr$ ), air Péclet ( $Pe^*$ ) and air Reynolds ( $Re^*$ ) numbers as well as the viscosity ratio ( $\delta _s$ ), corresponding to rotational, inertial, viscous, viscoelastic, surface tension, gravitational, air thermal diffusivity, aerodynamic and viscosity ratio effects. We find that the nonlinear rheology remarkably affects the fibre trajectory, radius and normal stresses. Increasing $Wi$ leads to a thicker fibre, whereas increasing $\delta _s$ shows an opposite trend. In addition, by increasing $Wi$ , the fibre curvature is enhanced, causing the fibre to spiral closer to the rotation centre.


Author(s):  
Yassine Slatni ◽  
Mahfoud Djezzar ◽  
Tarek Messai ◽  
Mahfoud Brahim

Inside a greenhouse, during the day, the temperature rises very quickly, while the plants have to face temperatures that rise to more than 35[Formula: see text]C. The plant closes its pores to limit sweating and stops growing. As soon as it gets hot, it is therefore necessary to ventilate the greenhouse. In this context, this research aims to investigate the behavior of the natural ventilation on the internal climate of the tunnel greenhouse, which contains two openings in the roof. The effect of the position of the openings on heat transfer is considered, thus promoting photosynthesis and plant growth. The vorticity transport equation, the Poisson equation and the energy equation are discretized by using the finite volume method. Two-dimensional simulations that described laminar flows in a steady state were carried out. Flows are studied for a range of parameters: the Rayleigh number, Ra, [Formula: see text], and three positions of opening ventilation. The results reveal that the ventilation through the top opening position allows the best creation of heat exchanges between the air inside the greenhouse and its atmosphere, which serves to conserve the plant under a favorable climate that allows its growth.


2021 ◽  
Vol 50 (4) ◽  
pp. 043102
Author(s):  
Changzhao Pan ◽  
Haiyang Zhang ◽  
Gérard Rouillé ◽  
Bo Gao ◽  
Laurent Pitre

Author(s):  
Sonu Patel

Abstract: Being an eco-friendly system and a cheaper way to produce cooling effect absorption refrigeration system (ARS) is becoming more popular as it can produce higher cooling capacity than vapor compression refrigeration systems, and it can be powered by other sources of energy (like waste heat from gas and steam turbines, or can utilizes renewable source of heat by sun, geothermal, biomass) other than electricity. In the recent years, the interest in absorption refrigeration system is growing because these systems have environmentally friendly refrigerant and absorbent pairs. In this study, a detail energetic analysis of triple stage LiBr-H20 absorption system using First law of thermodynamics is done. An Energy Equation Solver code are used to simulate the computer program is developed for the cycle and results are validated with past studies available is also done. Mass, energy and exergy balance equations and the various complementary relations constitute the simulation model of the triple effect refrigeration system. Further, the effect of exit temperature of generator, absorber, condenser and evaporator on COP, solution concentration and other parameters are studied. It was found in the study that COP increases with increasing the generator exit temperature keeping the absorber exit temperature constant but when the absorber exit temperature is increased COP tends to decrease and the concentration of weak solution leaving HP generator (Xw3), MP generator (Xw2) and LP generator (Xw1) also increases with increase in generator exit temperature, while it decreases with increase in condenser exit temperature. Keywords: Absorption Refrigeration System (ARS), LiBr + H2O, COP, solution concentration, Energy Equation Solver code, energetic analysis, triple effect refrigeration system.


Author(s):  
C. A Onate ◽  
G. O Egharevba ◽  
D. T Bankole

The solutions for Morse potential energy function under the influence of Schr¨odinger equation are examined using supersymmetric approach. The energy equation obtained was used to generate eigenvalues forX1 +state of scandium monoiodide (ScI) and X3 state of nitrogen monoiodide (NI) respectively were obtained by imputing their respective spectroscopic parameters. The calculated results for the two molecules aligned excellently with the predicted/observed values. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. Onate ◽  
I. B. Okon ◽  
M. C. Onyeaju ◽  
O. Ebomwonyi

AbstractA molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov–Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer were calculated numerically using their respective spectroscopic parameters. The calculated values for the three molecules are in excellent agreement with the observed values. Finally, we calculated different expectation values and examined the effects of the deformed and adjustable parameters on the expectation values.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012055
Author(s):  
Francesc Font

Abstract In this paper a mathematical model describing the heat transport in a spherical nanoparticle subject to Newton heating at its surface is presented. The governing equations involve a phonon hydrodynamic equation for the heat flux and the classical energy equation that relates the heat flux and the temperature. Assuming radial symmetry the model is reduced to two partial differential equation, one for the radial component of the flux and one for the temperature. We solve the model numerically by means of finite differences. The resulting temperature profiles show characteristic wave-like behaviour consistent with the non Fourier components in the hydrodynamic equation.


Sign in / Sign up

Export Citation Format

Share Document