scholarly journals Projective spherically symmetric Finsler metrics with constant flag curvature in R n

2011 ◽  
Vol 158 (1) ◽  
pp. 353-364 ◽  
Author(s):  
Linfeng Zhou
Author(s):  
Huaifu Liu ◽  
Xiaohuan Mo

AbstractIn this paper, we study locally projectively flat Finsler metrics of constant flag curvature. We find equations that characterize these metrics by warped product. Using the obtained equations, we manufacture new locally projectively flat Finsler warped product metrics of vanishing flag curvature. These metrics contain the metric introduced by Berwald and the spherically symmetric metric given by Mo-Zhu.


2008 ◽  
Vol 60 (2) ◽  
pp. 443-456 ◽  
Author(s):  
Z. Shen ◽  
G. Civi Yildirim

AbstractIn this paper, we find equations that characterize locally projectively flat Finsler metrics in the form , where is a Riemannian metric and is a 1-form. Then we completely determine the local structure of those with constant flag curvature.


2007 ◽  
Vol 18 (07) ◽  
pp. 749-760 ◽  
Author(s):  
BENLING LI ◽  
ZHONGMIN SHEN

In this paper, we study a class of Finsler metrics defined by a Riemannian metric and a 1-form. We classify those projectively flat with constant flag curvature.


Geometry ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Hongmei Zhu

We classify some special Finsler metrics of constant flag curvature on a manifold of dimension n>2.


Sign in / Sign up

Export Citation Format

Share Document