scholarly journals A normal generating set for the Torelli group of a compact non-orientable surface

2017 ◽  
Vol 195 (1) ◽  
pp. 365-377
Author(s):  
Ryoma Kobayashi
2015 ◽  
Vol 15 (6) ◽  
pp. 3535-3567 ◽  
Author(s):  
Neil J Fullarton
Keyword(s):  

2014 ◽  
Vol 157 (2) ◽  
pp. 345-355
Author(s):  
SUSUMU HIROSE ◽  
MASATOSHI SATO

AbstractWe construct a minimal generating set of the level 2 mapping class group of a nonorientable surface of genus g, and determine its abelianization for g ≥ 4.


1989 ◽  
Vol 31 (2) ◽  
pp. 213-218
Author(s):  
Stephen P. Humphries

Let F be an orientable surface with or without boundary and let M(F) be the mapping class group of F, i.e. the group of isotopy classes of orientation preserving diffeomorphisms of F. To each essential simple closed curve c on F we can associate an element C of M(F) called the Dehn twist about c. We refer the reader to [1] for definitions. It is well known (see [1]) that, at least in the case where F has no more than one boundary component, M(F) is generated by Dehn twists. Further, there are important subgroups of M(F) which are also generated by Dehn twists or simple products of Dehn twists; for example the Torelli group, the kernel of the homology action map M(F)→ Aut(H1(F;Z)) = Sp(H1(F;Z)), where Sp(H1(F;Z)) denotes the symplectic group, is known to be generated by Dehn twists about bounding curves and by “bounding pairs”. See [8] for proofs and definitions. Also Dehn twists crop up as geometric monodromy maps associated to Picard–Lefschetz vanishing cycles for plane curve singularities (see [5]).


1994 ◽  
Vol 03 (04) ◽  
pp. 547-574 ◽  
Author(s):  
GRETCHEN WRIGHT

The Reshetikhin-Turaev representation of the mapping class group of an orientable surface is computed explicitly in the case r = 4. It is then shown that the restriction of this representation to the Torelli group is equal to the sum of the Birman-Craggs homomorphisms. The proof makes use of an explicit correspondence between the basis vectors of the representation space, and the Z/2Z-quadratic forms on the first homology of the surface. This result corresponds to the fact, shown by Kirby and Melvin, that the three-manifold invariant when r = 4 is related to spin structures on the associated four-manifold.


2017 ◽  
Vol 238 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Susumu Hirose ◽  
Ryoma Kobayashi

Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aristides Kontogeorgis ◽  
Ioannis Tsouknidas

Sign in / Sign up

Export Citation Format

Share Document