surface homeomorphisms
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
pp. 1-43
Author(s):  
DOMINIC VECONI

Abstract We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.


2020 ◽  
pp. 1-17
Author(s):  
THOMAS BARTHELMÉ ◽  
SERGIO R. FENLEY ◽  
STEVEN FRANKEL ◽  
RAFAEL POTRIE

Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol., to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint, 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint, 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.


2019 ◽  
Vol 41 (1) ◽  
pp. 1-47
Author(s):  
SALVADOR ADDAS-ZANATA ◽  
BRUNO DE PAULA JACOIA

We consider closed orientable surfaces $S$ of genus $g>1$ and homeomorphisms $f:S\rightarrow S$ isotopic to the identity. A set of hypotheses is presented, called a fully essential system of curves $\mathscr{C}$ and it is shown that under these hypotheses, the natural lift of $f$ to the universal cover of $S$ (the Poincaré disk $\mathbb{D}$), denoted by $\widetilde{f},$ has complicated and rich dynamics. In this context, we generalize results that hold for homeomorphisms of the torus isotopic to the identity when their rotation sets contain zero in the interior. In particular, for $C^{1+\unicode[STIX]{x1D716}}$ diffeomorphisms, we show the existence of rotational horseshoes having non-trivial displacements in every homotopical direction. As a consequence, we found that the homological rotation set of such an $f$ is a compact convex subset of $\mathbb{R}^{2g}$ with maximal dimension and all points in its interior are realized by compact $f$-invariant sets and by periodic orbits in the rational case. Also, $f$ has uniformly bounded displacement with respect to rotation vectors in the boundary of the rotation set. This implies, in case where $f$ is area preserving, that the rotation vector of Lebesgue measure belongs to the interior of the rotation set.


2018 ◽  
Vol 147 (2) ◽  
pp. 681-686 ◽  
Author(s):  
Andres Koropecki ◽  
Patrice Le Calvez ◽  
Fabio Armando Tal

Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


2017 ◽  
Vol 38 (5) ◽  
pp. 1791-1836 ◽  
Author(s):  
ANDRES KOROPECKI ◽  
FABIO ARMANDO TAL

We study the interplay between the dynamics of area-preserving surface homeomorphisms homotopic to the identity and the topology of the surface. We define fully essential dynamics and generalize the results previously obtained on strictly toral dynamics to surfaces of higher genus. Non-fully essential dynamics are, in a way, reducible to surfaces of lower genus, while in the fully essential case the dynamics is decomposed into a disjoint union of periodic bounded disks and a complementary invariant externally transitive continuum $C$. When the Misiurewicz–Ziemian rotation set has non-empty interior the dynamics is fully essential, and the set $C$ is (externally) sensitive on initial conditions and realizes all of the rotational dynamics. As a fundamental tool we introduce the notion of homotopically bounded sets and we prove a general boundedness result for invariant open sets when the fixed point set is inessential.


Sign in / Sign up

Export Citation Format

Share Document