Marker-assisted selection of Ms locus responsible for male fertility restoration in onion (Allium cepa L.)

2021 ◽  
Vol 68 (7) ◽  
pp. 2793-2797
Author(s):  
Dalasanuru Chandregowda Manjunathagowda ◽  
Raman Selvakumar
HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 453B-453
Author(s):  
Ali Fuat Gokce ◽  
Michael J. Havey

Cytoplasmic-genic male sterility (CMS) is used to produce hybrid onion seed. For the most widely used source of CMS in onion, male sterility is conditioned by the interaction of sterile (S) cytoplasm and the homozygous recessive genotype at a single nuclear male-fertility restoration locus (Ms). Maintainer lines used to seed-propagate male-sterile lines possess normal fertile (N) cytoplasm and the homozyous recessive genotype at the Ms locus. Presently, it takes 4 to 8 years to establish if maintainer lines can be extracted from an uncharacterized population or family. We previously developed a PCR marker useful to distinguish N and S cytoplasms of onion. To tag the nuclear male-fertility restoration locus (Ms), we evaluated segregation at Ms over at least three environments. Segregations of AFLPs, RAPDs, and RFLPs revealed molecular markers flanking the Ms locus. We are working to convert these linked molecular markers to nonradioactive PCR-based detection. The organellar and nuclear markers were used to select plants from open-pollinated onion populations and determine if the number of test-crosses required to identify maintaining genotypes.


2021 ◽  
Author(s):  
Nari Yu ◽  
Sunggil Kim

Abstract Cytoplasmic male-sterility (CMS) has been exclusively used to produce F1 hybrid seeds of onion (Allium cepa L.). A single nuclear locus, Ms, is known to restore male-fertility of CMS in onions. Unstable male-sterile onions producing a small amount of pollen grains have been identified in a previous study. When such unstable male-sterile onions were crossed with stable male-sterile onions containing CMS-T cytoplasm, male-fertility was completely restored, although genotypes of the Ms locus were homozygous recessive. Inheritance patterns indicated that male-fertility restoration was controlled by a single locus designated as Ms2. A combined approach of bulked segregant analysis and RNA-seq was used to identify candidate genes for the Ms2 locus. High resolution melting (HRM) markers were developed based on single nucleotide polymorphisms (SNPs) detected by RNA-Seq. Comparative mapping of the Ms2 locus showed that Ms2 was positioned at the end of chromosome 2 with a distance of approximately 70 cM away from the Ms locus. Although 38 contigs containing reliable SNPs were analyzed using recombinants selected from 1,344 individuals, no contig showed perfect linkage to Ms2. Interestingly, transcription levels of orf725, a CMS-associated gene in onions, were significantly reduced in male-fertile individuals of segregating populations. However, no significant change in its transcription level was observed in individuals of a segregating population with male-fertility phenotypes determined by the Ms locus, suggesting that male-fertility restoration mechanism of Ms2 might be different from that of the Ms locus.


1999 ◽  
Vol 124 (6) ◽  
pp. 626-629 ◽  
Author(s):  
M.J. Havey

The primary source (S cytoplasm) of cytoplasmic-genic male sterility (CMS) used to produce hybrid-onion (Allium cepa L.) seed traces back to a single plant identified in 1925 in Davis, California. Many open-pollinated populations also possess this cytoplasm, creating an undesirable state of cytoplasmic uniformity. Transfer of cytoplasms from related species into cultivated populations may produce new sources of CMS. In an attempt to diversify the cytoplasms conditioning male sterility, the cytoplasm of Allium galanthum Kar. et Kir. was backcrossed for seven generations to bulb-onion populations. The flowers of galanthum-cytoplasmic populations possess upwardly curved perianth and filaments with no anthers, making identification of male-sterile plants easier than for either S- or T-cytoplasmic male-sterile onion plants. Mean seed yield per bulb of the galanthum-cytoplasmic populations was measured in cages using blue-bottle flies (Calliphora erythrocephala Meig.) as pollinators and was not significantly different from one of two S-cytoplasmic male-sterile F1 lines, a T-cytoplasmic male-sterile inbred line, or N-cytoplasmic male-fertile lines. Male-sterile lines possessing either the S or galanthum cytoplasm were each crossed with populations known to be homozygous dominant and recessive at the nuclear locus conditioning male-fertility restoration of S cytoplasm and progenies were scored for male-fertility restoration. Nuclear restorers of male fertility for S cytoplasm did not condition male fertility for the galanthum-cytoplasmic populations. It is intended that these galanthum-cytoplasmic onion populations be used as an alternative male-sterile cytoplasm for the diversification of hybrid onion seed production.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1317-1328
Author(s):  
Anita A de Haan ◽  
Hans P Koelewijn ◽  
Maria P J Hundscheid ◽  
Jos M M Van Damme

Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with “standard” male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an “expected” restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.


2017 ◽  
Vol 5 (4) ◽  
pp. 282-289 ◽  
Author(s):  
Valentin V. Kozhemyakin ◽  
Lev A. Elkonin ◽  
Jeffery A. Dahlberg

Sign in / Sign up

Export Citation Format

Share Document