scholarly journals Searching Pareto Optimal Solutions for the Problem of Forming and Restructuring Coalitions in Multi-Agent Systems

2009 ◽  
Vol 19 (1) ◽  
pp. 7-37 ◽  
Author(s):  
Philippe Caillou ◽  
Samir Aknine ◽  
Suzanne Pinson
2015 ◽  
Vol 713-715 ◽  
pp. 2106-2109
Author(s):  
Mauricio Mauledoux ◽  
Edilberto Mejía-Ruda ◽  
Oscar I. Caldas

The work is devoted to solve allocation task problem in multi agents systems using multi-objective genetic algorithms and comparing the technique with methods used in game theories. The paper shows the main advantages of genetic algorithms and the way to apply a parallel approach dividing the population in sub-populations saving time in the search and expanding the coverage of the solution in the Pareto optimal space.


2017 ◽  
Vol 19 (4) ◽  
pp. 49-65
Author(s):  
Mami Mohammed Amine ◽  
Khelfi Mohamed Fayçal ◽  
Zineb Laouici ◽  
Benyettou Noria

Mobile Robotics have taken an ever increasing role in everyday life in the past few years. The main objective often reflected in research is to try to have an optimal cooperation between the different robots to achieve a given objective. This cooperation allows one to have optimal solutions for sharing and resolving conflicts. This article proposes a solution to solve the problem of the coverage in environment with obstacles and the cooperation between several mobile robots. The authors developed a heuristic algorithm to optimize the coverage in a multi-robot system, while maintaining the connection between the robots. The proposed algorithm is based on the propagation of the robots as a function of the expansion of a wave in a uniform manner. The authors also integrate a self-reorientation approach to failure if a robot becomes out of race. Finally, this approach is modelled with the ADMs.


Author(s):  
Shaheen Fatima ◽  
Michael Wooldridge

This chapter presents an adaptive organizational policy for multi-agent systems called TRACE. TRACE allows a collection of multi-agent organizations to dynamically allocate tasks and resources between themselves in order to efficiently process and incoming stream of tasks. The tasks have deadlines and their arrival pattern changes over time. Hence, at any instant, some organizations could have surplus resources while others could become overloaded. In order to minimize the number of lost requests caused by an overload, the allocation of resources to organizations is changed dynamically by using ideas from microeconomics. We formally show that TRACE has the ability to adapt to load variations, reduce the number of lost requests, and allocate resources to computations on the basis of their criticality. Furthermore, although the solution generated by TRACE is not always Pareto-optimal, TRACE has the properties of feasibility and monotonicity that make it well suited to time-constrained applications. Finally, we present experimental results to demonstrate the performance of TRACE.


2020 ◽  
pp. 1080-1096
Author(s):  
Mami Mohammed Amine ◽  
Khelfi Mohamed Fayçal ◽  
Zineb Laouici ◽  
Benyettou Noria

Mobile Robotics have taken an ever increasing role in everyday life in the past few years. The main objective often reflected in research is to try to have an optimal cooperation between the different robots to achieve a given objective. This cooperation allows one to have optimal solutions for sharing and resolving conflicts. This article proposes a solution to solve the problem of the coverage in environment with obstacles and the cooperation between several mobile robots. The authors developed a heuristic algorithm to optimize the coverage in a multi-robot system, while maintaining the connection between the robots. The proposed algorithm is based on the propagation of the robots as a function of the expansion of a wave in a uniform manner. The authors also integrate a self-reorientation approach to failure if a robot becomes out of race. Finally, this approach is modelled with the ADMs.


Author(s):  
Martin Bullinger ◽  
Stefan Kober

A common theme of decision making in multi-agent systems is to assign utilities to alternatives, which individuals seek to maximize. This rationale is questionable in coalition formation where agents are affected by other members of their coalition. Based on the assumption that agents are benevolent towards other agents they like to form coalitions with, we propose loyalty in hedonic games, a binary relation dependent on agents' utilities. Given a hedonic game, we define a loyal variant where agents' utilities are defined by taking the minimum of their utility and the utilities of agents towards which they are loyal. This process can be iterated to obtain various degrees of loyalty, terminating in a locally egalitarian variant of the original game. We investigate axioms of group stability and efficiency for different degrees of loyalty. Specifically, we consider the problem of finding coalition structures in the core and of computing best coalitions, obtaining both positive and intractability results. In particular, the limit game possesses Pareto optimal coalition structures in the core.


2015 ◽  
Vol 10 (8) ◽  
pp. 845 ◽  
Author(s):  
Youness Chaabi ◽  
R. Messoussi ◽  
V. Hilaire ◽  
Y. Ruichek ◽  
K. Lekdioui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document