scholarly journals A modified simplex partition algorithm to test copositivity

Author(s):  
Mohammadreza Safi ◽  
Seyed Saeed Nabavi ◽  
Richard J. Caron

AbstractA real symmetric matrix A is copositive if $$x^\top Ax\ge 0$$ x ⊤ A x ≥ 0 for all $$x\ge 0$$ x ≥ 0 . As A is copositive if and only if it is copositive on the standard simplex, algorithms to determine copositivity, such as those in Sponsel et al. (J Glob Optim 52:537–551, 2012) and Tanaka and Yoshise (Pac J Optim 11:101–120, 2015), are based upon the creation of increasingly fine simplicial partitions of simplices, testing for copositivity on each. We present a variant that decomposes a simplex $$\bigtriangleup $$ △ , say with n vertices, into a simplex $$\bigtriangleup _1$$ △ 1 and a polyhedron $$\varOmega _1$$ Ω 1 ; and then partitions $$\varOmega _1$$ Ω 1 into a set of at most $$(n-1)$$ ( n - 1 ) simplices. We show that if A is copositive on $$\varOmega _1$$ Ω 1 then A is copositive on $$\bigtriangleup _1$$ △ 1 , allowing us to remove $$\bigtriangleup _1$$ △ 1 from further consideration. Numerical results from examples that arise from the maximum clique problem show a significant reduction in the time needed to establish copositivity of matrices.

2005 ◽  
Vol 95 (5) ◽  
pp. 503-511 ◽  
Author(s):  
Kengo Katayama ◽  
Akihiro Hamamoto ◽  
Hiroyuki Narihisa

2010 ◽  
Vol 53 (7) ◽  
pp. 1409-1416 ◽  
Author(s):  
Jing Yang ◽  
Cheng Zhang ◽  
Jin Xu ◽  
XiangRong Liu ◽  
XiaoLi Qiang

2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>


2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>


Sign in / Sign up

Export Citation Format

Share Document