grover’s algorithm
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 32)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-27
Author(s):  
Xuan-Bach Le ◽  
Shang-Wei Lin ◽  
Jun Sun ◽  
David Sanan

It is well-known that quantum programs are not only complicated to design but also challenging to verify because the quantum states can have exponential size and require sophisticated mathematics to encode and manipulate. To tackle the state-space explosion problem for quantum reasoning, we propose a Hoare-style inference framework that supports local reasoning for quantum programs. By providing a quantum interpretation of the separating conjunction, we are able to infuse separation logic into our framework and apply local reasoning using a quantum frame rule that is similar to the classical frame rule. For evaluation, we apply our framework to verify various quantum programs including Deutsch–Jozsa’s algorithm and Grover's algorithm.


Author(s):  
Roman B. Shrestha

Abstract: Blockchain is a promising revolutionary technology and is scalable for countless applications. The use of mathematically complex algorithms and hashes secure a blockchain from the risk of potential attacks and forgery. Advanced quantum computing algorithms like Shor’s and Grover’s are at the heart of breaking many known asymmetric cyphers and pose a severe threat to blockchain systems. Although a fully functional quantum computer capable of performing these attacks might not be developed until the next decade or century, we need to rethink designing the blockchain resistant to these threats. This paper discusses the potential impacts of quantum computing on blockchain technology and suggests remedies for making blockchain technology more secure and resistant to such technological advances. Keywords: Quantum Computing, Blockchain, Shor’s Algorithm, Grover’s Algorithm, Cryptography


2021 ◽  
Author(s):  
Mohd Harith Akmal Zulfaizal Fadillah ◽  
Bahari Idrus ◽  
Mohammad Khatim Hasan ◽  
Siti Munirah Mohd

2021 ◽  
Vol 21 (11-12) ◽  
pp. 945-954
Author(s):  
Apoorva D. Patel

The execution of Grover's quantum search algorithm needs rather limited resources without much fine tuning. Consequently, the algorithm can be implemented in a variety of physical set-ups, which involve wave dynamics but may not need other quantum features. Several of these set-ups are described, pointing out that some of them occur quite naturally. In particular, it is entirely possible that the algorithm played a key role in the selection of the universal structure of genetic languages.


Author(s):  
Nishant Agrawal

Quantum computing is an exciting new field in the intersection of computer science, physics and mathematics. It refines the central concepts from Quantum mechanics into its least difficult structures, peeling away the complications from the physical world. Any combinational circuit that has only one stuck at fault can be tested by applying a set of inputs that drive the circuit to verify the output response. The outputs of that circuit will be different from the one desired if the faults exist. This project describes a method of generating test patterns using the Boolean satisfaction method. First, the Boolean formula is constructed to express the Boolean difference between a fault-free circuit and a faulty circuit. Second, the Boolean satisfaction algorithm is applied to the formula in the previous step. The Grover algorithm is used to solve the Boolean satisfaction problem. The Boolean Satisfiability problem for Automatic Test Pattern Generation(ATPG) is implemented on IBM Quantum Experience. The Python program initially generates the boolean expression from the file and converts it into Conjunctive Normal Form(CNF) which is passed on to Grover Oracle and runs on IBM simulator and produces excellent results on combinational circuits for test pattern generation with a quadratic speedup. Grover’s Algorithm on this problem has a run time of O(√N).


Sign in / Sign up

Export Citation Format

Share Document