Journal of Global Optimization
Latest Publications


TOTAL DOCUMENTS

2649
(FIVE YEARS 381)

H-INDEX

72
(FIVE YEARS 6)

Published By Springer-Verlag

1573-2916, 0925-5001

Author(s):  
Emel Şeyma Küçükaşcı ◽  
Mustafa Gökçe Baydoğan ◽  
Z. Caner Taşkın

Author(s):  
Lars Schewe ◽  
Martin Schmidt ◽  
Johannes Thürauf

AbstractThe European gas market is implemented as an entry-exit system, which aims to decouple transport and trading of gas. It has been modeled in the literature as a multilevel problem, which contains a nonlinear flow model of gas physics. Besides the multilevel structure and the nonlinear flow model, the computation of so-called technical capacities is another major challenge. These lead to nonlinear adjustable robust constraints that are computationally intractable in general. We provide techniques to equivalently reformulate these nonlinear adjustable constraints as finitely many convex constraints including integer variables in the case that the underlying network is tree-shaped. We further derive additional combinatorial constraints that significantly speed up the solution process. Using our results, we can recast the multilevel model as a single-level nonconvex mixed-integer nonlinear problem, which we then solve on a real-world network, namely the Greek gas network, to global optimality. Overall, this is the first time that the considered multilevel entry-exit system can be solved for a real-world sized network and a nonlinear flow model.


Author(s):  
Bhupinder Singh Saini ◽  
Michael Emmerich ◽  
Atanu Mazumdar ◽  
Bekir Afsar ◽  
Babooshka Shavazipour ◽  
...  

AbstractWe introduce novel concepts to solve multiobjective optimization problems involving (computationally) expensive function evaluations and propose a new interactive method called O-NAUTILUS. It combines ideas of trade-off free search and navigation (where a decision maker sees changes in objective function values in real time) and extends the NAUTILUS Navigator method to surrogate-assisted optimization. Importantly, it utilizes uncertainty quantification from surrogate models like Kriging or properties like Lipschitz continuity to approximate a so-called optimistic Pareto optimal set. This enables the decision maker to search in unexplored parts of the Pareto optimal set and requires a small amount of expensive function evaluations. We share the implementation of O-NAUTILUS as open source code. Thanks to its graphical user interface, a decision maker can see in real time how the preferences provided affect the direction of the search. We demonstrate the potential and benefits of O-NAUTILUS with a problem related to the design of vehicles.


Author(s):  
Christoph Buchheim ◽  
Dorothee Henke

AbstractWe consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.


Author(s):  
Mahesh Chandra Mukkamala ◽  
Jalal Fadili ◽  
Peter Ochs

AbstractLipschitz continuity of the gradient mapping of a continuously differentiable function plays a crucial role in designing various optimization algorithms. However, many functions arising in practical applications such as low rank matrix factorization or deep neural network problems do not have a Lipschitz continuous gradient. This led to the development of a generalized notion known as the L-smad property, which is based on generalized proximity measures called Bregman distances. However, the L-smad property cannot handle nonsmooth functions, for example, simple nonsmooth functions like $$\vert x^4-1 \vert $$ | x 4 - 1 | and also many practical composite problems are out of scope. We fix this issue by proposing the MAP property, which generalizes the L-smad property and is also valid for a large class of structured nonconvex nonsmooth composite problems. Based on the proposed MAP property, we propose a globally convergent algorithm called Model BPG, that unifies several existing algorithms. The convergence analysis is based on a new Lyapunov function. We also numerically illustrate the superior performance of Model BPG on standard phase retrieval problems and Poisson linear inverse problems, when compared to a state of the art optimization method that is valid for generic nonconvex nonsmooth optimization problems.


Sign in / Sign up

Export Citation Format

Share Document