scholarly journals Zero Temperature Limit for Directed Polymers and Inviscid Limit for Stationary Solutions of Stochastic Burgers Equation

2018 ◽  
Vol 172 (5) ◽  
pp. 1358-1397
Author(s):  
Yuri Bakhtin ◽  
Liying Li
2009 ◽  
Vol 09 (04) ◽  
pp. 613-634 ◽  
Author(s):  
YONG LIU ◽  
HUAIZHONG ZHAO

In this paper, we show that the stationary solution u(t, ω) of the differentiable random dynamical system U: ℝ+ × L2[0, 1] × Ω → L2[0, 1] generated by the stochastic Burgers' equation with large viscosity, denoted by ν, driven by a Brownian motion in L2[0, 1], is given by: u(t, ω) = U(t, Y(ω), ω) = Y(θ(t, ω)), where Y(ω) can be represented by the following integral equation: [Formula: see text] Here θ is the group of P-preserving ergodic transformations on the canonical probability space [Formula: see text] such that θ(t, ω)(s) = W(t + s) - W(t), where W is the L2[0, 1]-valued Brownian motion on the probability space [Formula: see text], Tν is the linear operator semigroup on L2[0, 1] generated by νΔ.


2021 ◽  
Vol 382 (2) ◽  
pp. 875-949
Author(s):  
Alexander Dunlap ◽  
Cole Graham ◽  
Lenya Ryzhik

Author(s):  
Shenglan Yuan ◽  
Dirk Blömker ◽  
Jinqiao Duan

This work is devoted to investigating stochastic turbulence for the fluid flow in one-dimensional viscous Burgers equation perturbed by Lévy space-time white noise with the periodic boundary condition. We rigorously discuss the regularity of solutions and their statistical quantities in this stochastic dynamical system. The quantities include moment estimate, structure function and energy spectrum of the turbulent velocity field. Furthermore, we provide qualitative and quantitative properties of the stochastic Burgers equation when the kinematic viscosity [Formula: see text] tends towards zero. The inviscid limit describes the strong stochastic turbulence.


Author(s):  
Heyrim Cho ◽  
Daniele Venturi ◽  
George E Karniadakis

We study the statistical properties of random shock waves in stochastic Burgers equation subject to random space–time perturbations and random initial conditions. By using the response–excitation probability density function (PDF) method and the Mori–Zwanzig (MZ) formulation of irreversible statistical mechanics, we derive exact reduced-order equations for the one-point and two-point PDFs of the solution field. In particular, we compute the statistical properties of random shock waves in the inviscid limit by using an adaptive (shock-capturing) discontinuous Galerkin method in both physical and probability spaces. We consider stochastic flows generated by high-dimensional random initial conditions and random additive forcing terms, yielding multiple interacting shock waves collapsing into clusters and settling down to a similarity state. We also address the question of how random shock waves in space and time manifest themselves in probability space. The proposed new mathematical framework can be applied to different conservation laws, potentially leading to new insights into high-dimensional stochastic dynamical systems and more efficient computational algorithms.


2007 ◽  
Vol 99 (26) ◽  
Author(s):  
P. M. Walmsley ◽  
A. I. Golov ◽  
H. E. Hall ◽  
A. A. Levchenko ◽  
W. F. Vinen

Sign in / Sign up

Export Citation Format

Share Document