Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces

2010 ◽  
Vol 170 (4) ◽  
pp. 423-443 ◽  
Author(s):  
V. S. Guliyev ◽  
J. J. Hasanov ◽  
S. G. Samko
Author(s):  
Ferit Gürbüz ◽  
Shenghu Ding ◽  
Huili Han ◽  
Pinhong Long

AbstractIn this paper, applying the properties of variable exponent analysis and rough kernel, we study the mapping properties of rough singular integral operators. Then, we show the boundedness of rough Calderón–Zygmund type singular integral operator, rough Hardy–Littlewood maximal operator, as well as the corresponding commutators in variable exponent vanishing generalized Morrey spaces on bounded sets. In fact, the results above are generalizations of some known results on an operator basis.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianfeng Dong ◽  
Jizheng Huang ◽  
Heping Liu

LetL=-Δ+Vbe a Schrödinger operator onRn,n≥3, whereV≢0is a nonnegative potential belonging to the reverse Hölder classBn/2. The Hardy type spacesHLp, n/(n+δ) <p≤1,for someδ>0, are defined in terms of the maximal function with respect to the semigroup{e-tL}t>0. In this paper, we investigate the bounded properties of some singular integral operators related toL, such asLiγand∇L-1/2, on spacesHLp. We give the molecular characterization ofHLp, which is used to establish theHLp-boundedness of singular integrals.


2005 ◽  
Vol 12 (2) ◽  
pp. 309-320
Author(s):  
Lanzhe Liu

Abstract In this paper, we prove the boundedness for some multilinear operators generated by singular integral operators and Lipschitz functions on some Hardy and Herz type spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Amjad Hussain ◽  
Guilian Gao

The paper establishes some sufficient conditions for the boundedness of singular integral operators and their commutators from products of variable exponent Herz spaces to variable exponent Herz spaces.


2020 ◽  
Vol 70 (4) ◽  
pp. 893-902
Author(s):  
Ismail Ekincioglu ◽  
Vagif S. Guliyev ◽  
Esra Kaya

AbstractIn this paper, we prove the boundedness of the Bn maximal operator and Bn singular integral operators associated with the Laplace-Bessel differential operator ΔBn on variable exponent Lebesgue spaces.


Sign in / Sign up

Export Citation Format

Share Document