maximal operator
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 84)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Emiel Lorist ◽  
Zoe Nieraeth

AbstractWe prove that scalar-valued sparse domination of a multilinear operator implies vector-valued sparse domination for tuples of quasi-Banach function spaces, for which we introduce a multilinear analogue of the $${{\,\mathrm{UMD}\,}}$$ UMD condition. This condition is characterized by the boundedness of the multisublinear Hardy-Littlewood maximal operator and goes beyond examples in which a $${{\,\mathrm{UMD}\,}}$$ UMD condition is assumed on each individual space and includes e.g. iterated Lebesgue, Lorentz, and Orlicz spaces. Our method allows us to obtain sharp vector-valued weighted bounds directly from scalar-valued sparse domination, without the use of a Rubio de Francia type extrapolation result. We apply our result to obtain new vector-valued bounds for multilinear Calderón-Zygmund operators as well as recover the old ones with a new sharp weighted bound. Moreover, in the Banach function space setting we improve upon recent vector-valued bounds for the bilinear Hilbert transform.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2953
Author(s):  
Wei Chen ◽  
Jingya Cui

Let M be the Doob maximal operator on a filtered measure space and let v be an Ap weight with 1<p<+∞. We try proving that ∥Mf∥Lp(v)≤p′[v]Ap1p−1∥f∥Lp(v), where 1/p+1/p′=1. Although we do not find an approach which gives the constant p′, we obtain that ∥Mf∥Lp(v)≤p1p−1p′[v]Ap1p−1∥f∥Lp(v), with limp→+∞p1p−1=1.


Author(s):  
Juha Kinnunen ◽  
Kim Myyryläinen

We discuss the dyadic John–Nirenberg space that is a generalization of functions of bounded mean oscillation. A John–Nirenberg inequality, which gives a weak type estimate for the oscillation of a function, is discussed in the setting of medians instead of integral averages. We show that the dyadic maximal operator is bounded on the dyadic John–Nirenberg space and provide a method to construct nontrivial functions in the dyadic John–Nirenberg space. Moreover, we prove that the John–Nirenberg space is complete. Several open problems are also discussed.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Feng Liu ◽  
Shifen Wang ◽  
Qingying Xue
Keyword(s):  

Author(s):  
Edyta Kania-Strojec

AbstractWe study Hardy spaces associated with a general multidimensional Bessel operator $$\mathbb {B}_\nu $$ B ν . This operator depends on a multiparameter of type $$\nu $$ ν that is usually restricted to a product of half-lines. Here we deal with the Bessel operator in the general context, with no restrictions on the type parameter. We define the Hardy space $$H^1$$ H 1 for $$\mathbb {B}_\nu $$ B ν in terms of the maximal operator of the semigroup of operators $$\exp (-t\mathbb {B}_\nu )$$ exp ( - t B ν ) . Then we prove that, in general, $$H^1$$ H 1 admits an atomic decomposition of local type.


2021 ◽  
Vol 33 (5) ◽  
pp. 1097-1123
Author(s):  
Mingquan Wei

Abstract This paper extends the extrapolation theory to product Herz spaces. To prove the main result, we first investigate the dual space of the product Herz space, and then show the boundedness of the strong maximal operator on product Herz spaces. By using this extrapolation theory, we establish the John–Nirenberg inequality, the characterization of little bmo, the Fefferman–Stein vector-valued inequality, the boundedness of the bi-parameter singular integral operator, the strong fractional maximal operator, and the bi-parameter fractional integral operator on product Herz spaces. We also give a new characterization of little bmo via the boundedness of the commutators of some bi-parameter operators on product Herz spaces. Even in the one-parameter setting, some of our results are new.


Author(s):  
Carlos Pérez ◽  
Eduard Roure-Perdices

AbstractThe Hardy-Littlewood maximal operator M satisfies the classical Sawyer-type estimate $$\begin{aligned} \left\| \frac{Mf}{v}\right\| _{L^{1,\infty }(uv)} \le C_{u,v} \Vert f \Vert _{L^{1}(u)}, \end{aligned}$$ Mf v L 1 , ∞ ( u v ) ≤ C u , v ‖ f ‖ L 1 ( u ) , where $$u\in A_1$$ u ∈ A 1 and $$uv\in A_{\infty }$$ u v ∈ A ∞ . We prove a novel extension of this result to the general restricted weak type case. That is, for $$p>1$$ p > 1 , $$u\in A_p^{{\mathcal {R}}}$$ u ∈ A p R , and $$uv^p \in A_\infty $$ u v p ∈ A ∞ , $$\begin{aligned} \left\| \frac{Mf}{v}\right\| _{L^{p,\infty }(uv^p)} \le C_{u,v} \Vert f \Vert _{L^{p,1}(u)}. \end{aligned}$$ Mf v L p , ∞ ( u v p ) ≤ C u , v ‖ f ‖ L p , 1 ( u ) . From these estimates, we deduce new weighted restricted weak type bounds and Sawyer-type inequalities for the m-fold product of Hardy-Littlewood maximal operators. We also present an innovative technique that allows us to transfer such estimates to a large class of multi-variable operators, including m-linear Calderón-Zygmund operators, avoiding the $$A_\infty $$ A ∞ extrapolation theorem and producing many estimates that have not appeared in the literature before. In particular, we obtain a new characterization of $$A_p^{{\mathcal {R}}}$$ A p R . Furthermore, we introduce the class of weights that characterizes the restricted weak type bounds for the multi(sub)linear maximal operator $${\mathcal {M}}$$ M , denoted by $$A_{\mathbf {P}}^{{\mathcal {R}}}$$ A P R , establish analogous bounds for sparse operators and m-linear Calderón-Zygmund operators, and study the corresponding multi-variable Sawyer-type inequalities for such operators and weights. Our results combine mixed restricted weak type norm inequalities, $$A_p^{{\mathcal {R}}}$$ A p R and $$A_{\mathbf {P}}^{{\mathcal {R}}}$$ A P R weights, and Lorentz spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zaryab Hussain ◽  
Ghulam Murtaza ◽  
Toqeer Mahmood ◽  
Jia-Bao Liu

Let G = G 1 × G 2 × ⋯ × G m be the strong product of simple, finite connected graphs, and let ϕ : ℕ ⟶ 0 , ∞ be an increasing function. We consider the action of generalized maximal operator M G ϕ on ℓ p spaces. We determine the exact value of ℓ p -quasi-norm of M G ϕ for the case when G is strong product of complete graphs, where 0 < p ≤ 1 . However, lower and upper bounds of ℓ p -norm have been determined when 1 < p < ∞ . Finally, we computed the lower and upper bounds of M G ϕ p when G is strong product of arbitrary graphs, where 0 < p ≤ 1 .


Sign in / Sign up

Export Citation Format

Share Document