A Note on Meromorphic Functions with Finite Order and of Bounded l-Index

Author(s):  
Andriy Bandura
2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Jianming Qi ◽  
Jie Ding ◽  
Wenjun Yuan

We study the value distribution of a special class difference polynomial about finite order meromorphic function. Our methods of the proof are also different from ones in the previous results by Chen (2011), Liu and Laine (2010), and Liu and Yang (2009).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2020 ◽  
Vol 54 (2) ◽  
pp. 172-187
Author(s):  
I.E. Chyzhykov ◽  
A.Z. Mokhon'ko

We established new sharp estimates outside exceptional sets for of the logarithmic derivatives $\frac{d^ {k} \log f(z)}{dz^k}$ and its generalization $\frac{f^{(k)}(z)}{f^{(j)}(z)}$, where $f$ is a meromorphic function $f$ in the upper half-plane, $k>j\ge0$ are integers. These estimates improve known estimates due to the second author in the class of meromorphic functions of finite order.Examples show that size of exceptional sets are best possible in some sense.


2021 ◽  
Vol 18 (1) ◽  
pp. 1-11
Author(s):  
Andriy Bandura

We present a generalization of concept of bounded $l$-index for meromorphic functions of finite order. Using known results for entire functions of bounded $l$-index we obtain similar propositions for meromorphic functions. There are presented analogs of Hayman's theorem and logarithmic criterion for this class. The propositions are widely used to investigate $l$-index boundedness of entire solutions of differential equations. Taking this into account we raise a general problem of generalization of some results from theory of entire functions of bounded $l$-index by meromorphic functions of finite order and their applications to meromorphic solutions of differential equations. There are deduced sufficient conditions providing $l$-index boundedness of meromoprhic solutions of finite order for the Riccati differential equation. Also we proved that the Weierstrass $\wp$-function has bounded $l$-index with $l(z)=|z|.$


Author(s):  
Bao Qin Li

Abstract We give a characterization of the ratio of two Dirichelt series convergent in a right half-plane under an analytic condition, which is applicable to a uniqueness problem for Dirichlet series admitting analytic continuation in the complex plane as meromorphic functions of finite order; uniqueness theorems are given in terms of a-points of the functions.


Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 1-10
Author(s):  
Veena L. Pujari

AbstractIn this paper, we prove the analogous result of Fang [1] for transcendentalE-valued meromorphic functions of finite order, which generalizes and improves the result of Wu [6].


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Nan Wu ◽  
Zuxing Xuan

We obtain the existence of the filling disks with respect to Hayman directions. We prove that, under the conditionlimsupr→∞⁡(Tr,f/log⁡r3)=∞, there exists a sequence of filling disks of Hayman type, and these filling disks can determine a Hayman direction. Every meromorphic function of positive and finite orderρhas a sequence of filling disks of Hayman type, which can also determine a Hayman direction of orderρ.


Sign in / Sign up

Export Citation Format

Share Document