Exponential tail estimates in the law of ordinary logarithm (LOL) for triangular arrays of random variables

2020 ◽  
Vol 60 (3) ◽  
pp. 330-358
Author(s):  
Maria Rosaria Formica ◽  
Yuriy Vasil’ovich Kozachenko ◽  
Eugeny Ostrovsky ◽  
Leonid Sirota
Author(s):  
R. A. Maller

AbstractThe main purpose of the paper is to give necessary and sufficient conditions for the almost sure boundedness of (Sn – αn)/B(n), where Sn = X1 + X2 + … + XmXi being independent and identically distributed random variables, and αnand B(n) being centering and norming constants. The conditions take the form of the convergence or divergence of a series of a geometric subsequence of the sequence P(Sn − αn > a B(n)), where a is a constant. The theorem is distinguished from previous similar results by the comparative weakness of the subsidiary conditions and the simplicity of the calculations. As an application, a law of the iterated logarithm general enough to include a result of Feller is derived.


Author(s):  
Li Guan ◽  
Jinping Zhang ◽  
Jieming Zhou

This work proposes the concept of uncorrelation for fuzzy random variables, which is weaker than independence. For the sequence of uncorrelated fuzzy variables, weak and strong law of large numbers are studied under the uniform Hausdorff metric d H ∞ . The results generalize the law of large numbers for independent fuzzy random variables.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingzhou Xu ◽  
Kun Cheng

By an inequality of partial sum and uniform convergence of the central limit theorem under sublinear expectations, we establish precise asymptotics in the law of the iterated logarithm for independent and identically distributed random variables under sublinear expectations.


2003 ◽  
Vol 40 (01) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X 1, X 2, …, X n be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


Author(s):  
Miloslav Jirina

AbstractLet {Xnk} be a triangular array of independent random variables satisfying the so-called tail-negligibility condition, i.e. such that Prob{|Xnk| > a} → 0 as both k, n → ∞. It is also assumed that for each fixed k, Xnk converges in distribution as n → ∞. Theorems on the asymptotic behavior of the row sums of the array, analogous to those of the classical theory under the uniform negligibility condition, are presented.


1966 ◽  
Vol 3 (02) ◽  
pp. 481-494 ◽  
Author(s):  
Morris L. Eaton

Throughout this paper, we shall write ℒ(W) = ℒ(Z) to mean the random variables W and Z have the same distribution. The relation “ℒ(W) = ℒ(;Z)” reads “the law of W equals the law of Z”.


1970 ◽  
Vol 7 (02) ◽  
pp. 432-439 ◽  
Author(s):  
William E. Strawderman ◽  
Paul T. Holmes

Let X 1, X2, X 3 , ··· be independent, identically distributed random variables on a probability space (Ω, F, P); and with a continuous distribution function. Let the sequence of indices {Vr } be defined as Also define The following theorem is due to Renyi [5].


Sign in / Sign up

Export Citation Format

Share Document