scholarly journals Relative Necessity and Propositional Quantification

2019 ◽  
Vol 49 (4) ◽  
pp. 703-726
Author(s):  
Alexander Roberts

AbstractFollowing Smiley’s (The Journal of Symbolic Logic, 28, 113–134 1963) influential proposal, it has become standard practice to characterise notions of relative necessity in terms of simple strict conditionals. However, Humberstone (Reports on Mathematical Logic, 13, 33–42 1981) and others have highlighted various flaws with Smiley’s now standard account of relative necessity. In their recent article, Hale and Leech (Journal of Philosophical Logic, 46, 1–26 2017) propose a novel account of relative necessity designed to overcome the problems facing the standard account. Nevertheless, the current article argues that Hale & Leech’s account suffers from its own defects, some of which Hale & Leech are aware of but underplay. To supplement this criticism, the article offers an alternative account of relative necessity which overcomes these defects. This alternative account is developed in a quantified modal propositional logic and is shown model-theoretically to meet several desiderata of an account of relative necessity.

1999 ◽  
Vol 5 (3) ◽  
pp. 331-366 ◽  
Author(s):  
Richard Zach

AbstractSome of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917–1923. The aim of this paper is to describe these results, focussing primarily on propositional logic, and to put them in their historical context. It is argued that truth-value semantics, syntactic (“Post-”) and semantic completeness, decidability, and other results were first obtained by Hilbert and Bernays in 1918, and that Bernays's role in their discovery and the subsequent development of mathematical logic is much greater than has so far been acknowledged.


Studia Logica ◽  
2021 ◽  
Author(s):  
Martin Fischer

AbstractIn this paper we discuss sequent calculi for the propositional fragment of the logic of HYPE. The logic of HYPE was recently suggested by Leitgeb (Journal of Philosophical Logic 48:305–405, 2019) as a logic for hyperintensional contexts. On the one hand we introduce a simple $$\mathbf{G1}$$ G 1 -system employing rules of contraposition. On the other hand we present a $$\mathbf{G3}$$ G 3 -system with an admissible rule of contraposition. Both systems are equivalent as well as sound and complete proof-system of HYPE. In order to provide a cut-elimination procedure, we expand the calculus by connections as introduced in Kashima and Shimura (Mathematical Logic Quarterly 40:153–172, 1994).


2014 ◽  
Vol 7 (3) ◽  
pp. 455-483 ◽  
Author(s):  
MAJID ALIZADEH ◽  
FARZANEH DERAKHSHAN ◽  
HIROAKIRA ONO

AbstractUniform interpolation property of a given logic is a stronger form of Craig’s interpolation property where both pre-interpolant and post-interpolant always exist uniformly for any provable implication in the logic. It is known that there exist logics, e.g., modal propositional logic S4, which have Craig’s interpolation property but do not have uniform interpolation property. The situation is even worse for predicate logics, as classical predicate logic does not have uniform interpolation property as pointed out by L. Henkin.In this paper, uniform interpolation property of basic substructural logics is studied by applying the proof-theoretic method introduced by A. Pitts (Pitts, 1992). It is shown that uniform interpolation property holds even for their predicate extensions, as long as they can be formalized by sequent calculi without contraction rules. For instance, uniform interpolation property of full Lambek predicate calculus, i.e., the substructural logic without any structural rule, and of both linear and affine predicate logics without exponentials are proved.


Sign in / Sign up

Export Citation Format

Share Document