First Hitting Time Distributions for Brownian Motion and Regions with Piecewise Linear Boundaries

2018 ◽  
Vol 21 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Qinglai Dong ◽  
Lirong Cui
1993 ◽  
Vol 30 (01) ◽  
pp. 17-27
Author(s):  
Aimé Lachal

Let be the Brownian motion process starting at the origin, its primitive and Ut = (Xt+x + ty, Bt + y), , the associated bidimensional process starting from a point . In this paper we present an elementary procedure for re-deriving the formula of Lefebvre (1989) giving the Laplace–Fourier transform of the distribution of the couple (σ α, Uσa ), as well as Lachal's (1991) formulae giving the explicit Laplace–Fourier transform of the law of the couple (σ ab, Uσab ), where σ α and σ ab denote respectively the first hitting time of from the right and the first hitting time of the double-sided barrier by the process . This method, which unifies and considerably simplifies the proofs of these results, is in fact a ‘vectorial' extension of the classical technique of Darling and Siegert (1953). It rests on an essential observation (Lachal (1992)) of the Markovian character of the bidimensional process . Using the same procedure, we subsequently determine the Laplace–Fourier transform of the conjoint law of the quadruplet (σ α, Uσa, σb, Uσb ).


1993 ◽  
Vol 30 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Aimé Lachal

Let be the Brownian motion process starting at the origin, its primitive and Ut = (Xt+x + ty, Bt + y), , the associated bidimensional process starting from a point . In this paper we present an elementary procedure for re-deriving the formula of Lefebvre (1989) giving the Laplace–Fourier transform of the distribution of the couple (σ α, Uσa), as well as Lachal's (1991) formulae giving the explicit Laplace–Fourier transform of the law of the couple (σ ab, Uσab), where σ α and σ ab denote respectively the first hitting time of from the right and the first hitting time of the double-sided barrier by the process . This method, which unifies and considerably simplifies the proofs of these results, is in fact a ‘vectorial' extension of the classical technique of Darling and Siegert (1953). It rests on an essential observation (Lachal (1992)) of the Markovian character of the bidimensional process .Using the same procedure, we subsequently determine the Laplace–Fourier transform of the conjoint law of the quadruplet (σ α, Uσa, σb, Uσb).


Author(s):  
Angelos Dassios ◽  
Junyi Zhang

AbstractConsider a stochastic process that lives on n-semiaxes emanating from a common origin. On each semiaxis it behaves as a Brownian motion and at the origin it chooses a semiaxis randomly. In this paper we study the first hitting time of the process. We derive the Laplace transform of the first hitting time, and provide the explicit expressions for its density and distribution functions. Numerical examples are presented to illustrate the application of our results.


2009 ◽  
Vol 79 (23) ◽  
pp. 2422-2428 ◽  
Author(s):  
Ken Jackson ◽  
Alexander Kreinin ◽  
Wanhe Zhang

1999 ◽  
Vol 36 (4) ◽  
pp. 1019-1030 ◽  
Author(s):  
Alex Novikov ◽  
Volf Frishling ◽  
Nino Kordzakhia

Using the Girsanov transformation we derive estimates for the accuracy of piecewise approximations for one-sided and two-sided boundary crossing probabilities. We demonstrate that piecewise linear approximations can be calculated using repeated numerical integration. As an illustrative example we consider the case of one-sided and two-sided square-root boundaries for which we also present analytical representations in a form of infinite power series.


Sign in / Sign up

Export Citation Format

Share Document