Solution of boundary layer flow and heat transfer of an electrically conducting micropolar fluid in a non-Darcian porous medium

Meccanica ◽  
2011 ◽  
Vol 47 (1) ◽  
pp. 195-202 ◽  
Author(s):  
G. Domairry ◽  
Z. Ziabakhsh
2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2006 ◽  
Vol 2006 ◽  
pp. 1-10 ◽  
Author(s):  
Mostafa A. A. Mahmoud ◽  
Mahmoud Abd-elaty Mahmoud ◽  
Shimaa E. Waheed

We have studied the effects of radiation on the boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a continuously moving stretching surface embedded in a non-Darcian porous medium with a uniform magnetic field. The transformed coupled nonlinear ordinary differential equations are solved numerically. The velocity, the angular velocity, and the temperature are shown graphically. The numerical values of the skin friction coefficient, the wall couple stress, and the wall heat transfer rate are computed and discussed for various values of parameters.


Sign in / Sign up

Export Citation Format

Share Document