Exponential Stability of Pseudo Almost Periodic Solutions for Neutral Type Cellular Neural Networks with D Operator

2017 ◽  
Vol 46 (1) ◽  
pp. 329-342 ◽  
Author(s):  
Yanli Xu
2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Lili Zhao ◽  
Yongkun Li

Some sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of weighted pseudo-almost periodic solutions to a class of neutral type high-order Hopfield neural networks with distributed delays by employing fixed point theorem and differential inequality techniques. The results of this paper are new and they complement previously known results. Moreover, an example is given to show the effectiveness of the proposed method and results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yongkun Li ◽  
Shiping Shen

Abstract At present, the research on discrete-time Clifford-valued neural networks is rarely reported. However, the discrete-time neural networks are an important part of the neural network theory. Because the time scale theory can unify the study of discrete- and continuous-time problems, it is not necessary to separately study continuous- and discrete-time systems. Therefore, to simultaneously study the pseudo almost periodic oscillation and synchronization of continuous- and discrete-time Clifford-valued neural networks, in this paper, we consider a class of Clifford-valued fuzzy cellular neural networks on time scales. Based on the theory of calculus on time scales and the contraction fixed point theorem, we first establish the existence of pseudo almost periodic solutions of neural networks. Then, under the condition that the considered network has pseudo almost periodic solutions, by designing a novel state-feedback controller and using reduction to absurdity, we obtain that the drive-response structure of Clifford-valued fuzzy cellular neural networks on time scales with pseudo almost periodic coefficients can realize the global exponential synchronization. Finally, we give a numerical example to illustrate the feasibility of our results.


Sign in / Sign up

Export Citation Format

Share Document