Seismic risk assessment of buildings in urban areas: a case study for Denizli, Turkey

2008 ◽  
Vol 46 (3) ◽  
pp. 265-285 ◽  
Author(s):  
Mehmet Inel ◽  
Sevket Murat Senel ◽  
Selcuk Toprak ◽  
Yasemin Manav
Author(s):  
Nina N. Serdar ◽  
Jelena R. Pejovic ◽  
Radenko Pejovic ◽  
Miloš Knežević

<p>It is of great importance that traffic network is still functioning in post- earthquake period, so that interventions in emergency situations are not delayed. Bridges are part of the traffic system that can be considered as critical for adequate post-earthquake response. Their seismic response often dominate the response and reliability of overall transportation system, so special attention should be given to risk assessment for these structures. In seismic vulnerability and risk assessment bridges are often classified as regular or irregular structures, dependant on their configuration. Curved bridges are considered as irregular and unexpected behaviour during seismic excitation is noticed in past earthquake events. Still there are an increasing number of these structures especially in densely populated urban areas since curved configuration is often suitable to accommodate complicated location conditions. In this paper special attention is given to seismic risk assessment of curved reinforce concrete bridges through fragility curves. Procedure for developing fragility curves is described as well as influence of radius curvature on their seismic vulnerability is investigated. Since vulnerability curves provide probability of exceedance of certain damage state, four damage states are considered: near collapse, significant damage, intermediate damage state, onset of damage and damage limitation. As much as possible these damage states are related to current European provisions. Radius of horizontal curvature is varied by changing subtended angle: 25 °, 45 ° and 90 °. Also one corresponding straight bridge is analysed. Nonlinear static procedure is used for developing of fragility curves. It was shown that probability of exceedance of certain damage states is increased as subtended angle is increased. Also it is determined that fragility of curved bridges can be related to fragility of straight counterparts what facilitates seismic evaluation of seismic vulnerability of curved bridges structures.</p>


2017 ◽  
Vol 12 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Allaeddine Athmani ◽  
Tiago Miguel Ferreira ◽  
Romeu Vicente

Author(s):  
Antonio C. Caputo ◽  
Alessandro Vigna

Process plants are vulnerable to natural hazards and, in particular, to earthquakes. Nevertheless, the quantitative assessment of seismic risk of process plants is a complex task because available methodologies developed in the field of civil and nuclear engineering are not readily applicable to process plants, while technical standards and regulations do not establish any procedure for the overall seismic risk assessment of industrial process plants located in earthquake-prone areas. This paper details the results of a case study performing a seismic risk assessment of an Italian refinery having a 85,000 barrels per day production capacity, and a storage capacity of over 1,500,000 m3. The analysis has been carried out resorting to a novel quantitative methodology developed in the framework of a European Union research program (INDUSE 2 SAFETY). The method is able to systematically generate potential starting scenarios, deriving from simultaneous interactions of the earthquake with each separate equipment, and to account for propagation of effects between distinct equipment (i.e. Domino effects) keeping track of multiple simultaneous and possibly interacting chains of accidents. In the paper the methodology, already described elsewhere, is briefly resumed, and numerical results are presented showing relevant accident chains and expected economic loss, demonstrating the capabilities of the developed tool.


Author(s):  
Michela Lerna ◽  
Maria F. Sabbà ◽  
Mariella Diaferio ◽  
Leonarda Carnimeo ◽  
Salvador Ivorra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document