Smolyak's algorithm for weighted L1-approximation of multivariate functions with bounded rth mixed derivatives over ℝd

2005 ◽  
Vol 40 (4) ◽  
pp. 401-414 ◽  
Author(s):  
Piotr Gajda
2019 ◽  
Vol 19 (11) ◽  
pp. 944-956 ◽  
Author(s):  
Oscar Martínez-Santiago ◽  
Yovani Marrero-Ponce ◽  
Ricardo Vivas-Reyes ◽  
Mauricio E.O. Ugarriza ◽  
Elízabeth Hurtado-Rodríguez ◽  
...  

Background: Recently, some authors have defined new molecular descriptors (MDs) based on the use of the Graph Discrete Derivative, known as Graph Derivative Indices (GDI). This new approach about discrete derivatives over various elements from a graph takes as outset the formation of subgraphs. Previously, these definitions were extended into the chemical context (N-tuples) and interpreted in structural/physicalchemical terms as well as applied into the description of several endpoints, with good results. Objective: A generalization of GDIs using the definitions of Higher Order and Mixed Derivative for molecular graphs is proposed as a generalization of the previous works, allowing the generation of a new family of MDs. Methods: An extension of the previously defined GDIs is presented, and for this purpose, the concept of Higher Order Derivatives and Mixed Derivatives is introduced. These novel approaches to obtaining MDs based on the concepts of discrete derivatives (finite difference) of the molecular graphs use the elements of the hypermatrices conceived from 12 different ways (12 events) of fragmenting the molecular structures. The result of applying the higher order and mixed GDIs over any molecular structure allows finding Local Vertex Invariants (LOVIs) for atom-pairs, for atoms-pairs-pairs and so on. All new families of GDIs are implemented in a computational software denominated DIVATI (acronym for Discrete DeriVAtive Type Indices), a module of KeysFinder Framework in TOMOCOMD-CARDD system. Results: QSAR modeling of the biological activity (Log 1/K) of 31 steroids reveals that the GDIs obtained using the higher order and mixed GDIs approaches yield slightly higher performance compared to previously reported approaches based on the duplex, triplex and quadruplex matrix. In fact, the statistical parameters for models obtained with the higher-order and mixed GDI method are superior to those reported in the literature by using other 0-3D QSAR methods. Conclusion: It can be suggested that the higher-order and mixed GDIs, appear as a promissory tool in QSAR/QSPRs, similarity/dissimilarity analysis and virtual screening studies.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaomin Liu ◽  
Muhammad Abbas ◽  
Honghong Yang ◽  
Xinqiang Qin ◽  
Tahir Nazir

AbstractIn this paper, a stabilized numerical method with high accuracy is proposed to solve time-fractional singularly perturbed convection-diffusion equation with variable coefficients. The tailored finite point method (TFPM) is adopted to discrete equation in the spatial direction, while the time direction is discreted by the G-L approximation and the L1 approximation. It can effectively eliminate non-physical oscillation or excessive numerical dispersion caused by convection dominant. The stability of the scheme is verified by theoretical analysis. Finally, one-dimensional and two-dimensional numerical examples are presented to verify the efficiency of the method.


1987 ◽  
Vol 75 (7) ◽  
pp. 970-971 ◽  
Author(s):  
A.A. Georgiev

2013 ◽  
Vol 16 ◽  
pp. 78-108 ◽  
Author(s):  
Andrew R. Booker ◽  
Andreas Strömbergsson ◽  
Holger Then

AbstractUsing the paths of steepest descent, we prove precise bounds with numerical implied constants for the modified Bessel function${K}_{ir} (x)$of imaginary order and its first two derivatives with respect to the order. We also prove precise asymptotic bounds on more general (mixed) derivatives without working out numerical implied constants. Moreover, we present an absolutely and rapidly convergent series for the computation of${K}_{ir} (x)$and its derivatives, as well as a formula based on Fourier interpolation for computing with many values of$r$. Finally, we have implemented a subset of these features in a software library for fast and rigorous computation of${K}_{ir} (x)$.


Sign in / Sign up

Export Citation Format

Share Document