Current Topics in Medicinal Chemistry
Latest Publications





Published By Bentham Science


Raghu Pradeep Narayanan ◽  
Leeza Abraham

Abstreact: DNA nanotechnology marvels the scientific world with its capabilities to design, engineer, and demonstrate nanoscale shapes. This review is a condensed version walking the reader through the structural developments in the field over the past 40 years starting from the basic design rules of the double-stranded building block to the most recent advancements in self-assembled hierarchically achieved structures to date. It builds off from the fundamental motivation of building 3-dimensional (3D) lattice structures of tunable cavities going all the way up to artificial nanorobots fighting cancer. The review starts by covering the most important developments from the fundamental bottom-up approach of building structures, which is the ‘tile’ based approach covering 1D, 2D, and 3D building blocks, after which, the top-down approach using DNA origami and DNA bricks is also covered. Thereafter, DNA nanostructures assembled using not so commonly used (yet promising) techniques like i-motifs, quadruplexes, and kissing loops are covered. Highlights from the field of dynamic DNA nanostructures have been covered as well, walking the reader through the various approaches used within the field to achieve movement. The article finally concludes by giving the authors a view of what the future of the field might look like while suggesting in parallel new directions that fellow/future DNA nanotechnologists could think about.

Bhupender Nehra ◽  
Bijo Mathew ◽  
Pooja A Chawla

Aim: To describe structure activity relationship of heterocyclic derivatives with multi-targeted anticancer activity. Objectives: With the following goals in mind, this review tries to describe significant recent advances in the medicinal chemistry of heterocycle-based compounds: (1) To shed light on recent literature focused on heterocyclic derivatives' anticancer potential; (2) To discuss recent advances in the medicinal chemistry of heterocyclic derivatives, as well as their biological implications for cancer eradication; (3) To summarise the comprehensive correlation of structure activity relationship (SAR) with pharmacological outcomes in cancer therapy. Background: Cancer remains one of the major serious health issues devastating the world today. Cancer is a complex disease in which improperly altered cells proliferate at an uncontrolled, rapid, and severe rate. Variables such as poor dietary habits, high stress, age, and smoking, can all contribute to the development of cancer. Cancer can affect almost any organ or tissue, although the brain, breast, liver, and colon are the most frequently affected organs. From several years, surgical operations and irradiation are in use along with chemotherapy as a primary treatment of cancer but still effective treatment of cancer remains a huge challenge. Chemotherapy is now one of the most effective strategies to eradicate cancer, although it has been shown to have a number of cytotoxic and unfavourable effects on normal cells. Despite all of these cancer treatments, there are several other targets for anticancer drugs. Cancer can be effectively eradicated by focusing on these targets, which include both cell-specific and receptor-specific targets such as tyrosine kinase receptors (TKIs). Heterocyclic scaffolds also have a variety of applications in drug development and are a common moiety in the pharmaceutical, agrochemical, and textile industries. Methods: The association between structural activity relationship data of many powerful compounds and their anticancer potential in vitro and in vivo has been studied. SAR of powerful heterocyclic compounds can also be generated using molecular docking simulations, as reported vastly in literature. Conclusions: Heterocycles have a wide range of applications, from natural compounds to synthesised derivatives with powerful anticancer properties. To avoid cytotoxicity or unfavourable effects on normal mammalian cells due to a lack of selectivity towards the target site, as well as to reduce the occurrence of drug resistance, safer anticancer lead compounds with higher potency and lower cytotoxicity are needed. This review emphasizes on design and development of heterocyclic lead compounds with promising anticancer potential.

Kleber Simônio Parreira ◽  
Pedro Scarpelli ◽  
Wânia Rezende Lima ◽  
R. S Garcia

Abstract: In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.

Wen Li ◽  
Jinyang Zhang ◽  
Min Wang ◽  
Ru Dong ◽  
Xin Zhou ◽  

Abstract: Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles including pyrazolopyrimidines and imidazopyrimidines is a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which have been discovered as core structure for promising anti-cancer agents used in clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.

Nohemí del C. Reyes-Vázquez ◽  
Laura A. de la Rosa ◽  
Juan Luis Morales-Landa ◽  
Jorge Alberto García-Fajardo ◽  
Miguel Ángel García-Cruz

Background: The pecan nutshell contains phytochemicals with various biological activities that are potentially useful in the prevention or treatment of diseases such as cancer, diabetes, and metabolic imbalances associated with heart diseases. Objective: To update this topic by means of a literature review and include those that contribute to the knowledge of the chemical composition and biological activities of pecan nutshell, particularly of those related to the therapeutic potential against some chronic degenerative diseases associated with oxidative stress. Method: Exhaustive and detailed review of the existing literature using electronic databases. Conclusion: The pecan nutshell is a promising natural product with pharmaceutical uses in various diseases. However, additional research related to the assessment of efficient extraction methods and characterization, particularly the evaluation of the mechanisms of action in new in vivo models, is necessary to confirm these findings and development of new drugs with therapeutic use.

Mohammad Abid ◽  
Shailja Singh ◽  
Timothy J. Egan ◽  
Mukesh C. Joshi

Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.

Eric Murillo-Rodríguez ◽  
Cristina Carreón ◽  
Mario Eduardo Acosta-Hernández ◽  
Fabio García-García

Abstract: A complex neurobiological network drives the sleep-wake cycle. In addition, external stimuli, including stimulants or depressor drugs, also influence the control of sleep. Here we review the recent advances that contribute to the comprehensive understanding of the actions of stimulants and depressor compounds, such as alcohol and cannabis, in sleep regulation. The objective of this review is to highlight the neurobiological mechanism engaged by alcohol and cannabis in sleep control.

Dongguo Xia ◽  
Hao Liu ◽  
Xiang Cheng ◽  
Manikantha Maraswami ◽  
Yiting Chen ◽  

Abstract: Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.

Fernanda Virginia Barreto Mota ◽  
Felipe Neves Coutinho ◽  
Vanessa Mylenna Florêncio de Carvalho ◽  
Julyanne Cunha de Assis Correia ◽  
Isla Vanessa Gomes Alves Bastos ◽  

Background: In a study recently published by our research group, the compounds isoxazoline-acylhydrazone derivatives R-99 and R-123 presented promising antinociceptive activity. However, the mechanism of action of this compound is still unknown. Objective: This study aimed to assess the mechanisms involved in the antinociceptive activity of these compounds in chemical models of pain. Methods: Animals were orally pretreated and evaluated in the acetic acid-, formalin-, capsaicin-, carrageenan- and Complete Freund's Adjuvant (CFA)-induced pain models in mice. The effects of the compounds after pretreatment with naloxone, prazosin, yohimbine, atropine, L-arginine, or glibenclamide were studied, using the acetic acid-induced writhing test to verify the possible involvement of opioid, α1-adrenergic, α2-adrenergic or cholinergic receptors, and nitric oxide or potassium channels pathways, respectively. Results: R-99 and R-123 compounds showed significant antinociceptive activity on pain models induced by acetic acid, formalin, and capsaicin. Both compounds decreased the mechanical hyperalgesia induced by carrageenan or CFA in mice. The antinociceptive effects of R-99 and R-123 on the acetic acid-induced writhing test were significantly attenuated by pretreatment with naloxone, yohimbine or atropine. R-99 also showed an attenuated response after pretreatment with atropine and glibenclamide. However, on the pretreatment with prazosin, there was no change in the animals' response to both compounds. Conclusion: R-99 and R-123 showed antinociceptive effects related to mechanisms that involve, at least in part, interaction with the opioid and adrenergic systems and TRPV1 pathways. The compound R-99 also interacts with the cholinergic pathways and potassium channels.

Lutfur Rahman ◽  
Sabahat Asif ◽  
Ata Ullaha ◽  
Waheed S. Khan ◽  
Asma Rehman

Abstract: The rapid emergence of multidrug resistant bacterial strains clearly highlights the need for the development of new antimicrobial compounds/materials to address associated healthcare challenges. Meanwhile, the adverse side effects of conventional antibiotics on human health urge the development of new natural product-based antimicrobials to minimize the side effects. In this respect, we concisely review the recent scientific contributions to develop natural product-based nano-antibiotics. The focus of the review is on the use of flavonoids, peptides, and cationic biopolymer functionalized metal/metal oxide nanoparticles as efficient tools to hit the MDR bacterial strains. It summarizes the most recent aspects of the functionalized nanoparticles against various pathogenic bacterial strains with respect to their minimal inhibitory concentrations and mechanism of action at the cellular and molecular levels. At the end, the future perspectives to materialize the in vivo applications of nano-antimicrobials are suggested on the basis of the available research.

Sign in / Sign up

Export Citation Format

Share Document