Diverse soliton structures for fractional nonlinear Schrodinger equation, KdV equation and WBBM equation adopting a new technique

2021 ◽  
Vol 53 (12) ◽  
Author(s):  
Md. Tarikul Islam ◽  
J. F. Gómez-Aguilar ◽  
Md. Ali Akbar ◽  
G. Fernández-Anaya
2021 ◽  
Author(s):  
Md. Tarikul Islam ◽  
Francisco Gomez ◽  
Md. Ali Akbar

Abstract Nonlinear fractional order partial differential equations standing for the numerous dynamical systems relating to nature world are supposed to by unraveled for depicting complex physical phenomena. In this exploration, we concentrate to disentangle the space and time fractional nonlinear Schrodinger equation, Korteweg-De Vries (KdV) equation and the Wazwaz-Benjamin-Bona-Mahony (WBBM) equation bearing the noteworthy significance in accordance to their respective position. A composite wave variable transformation with the assistance of conformable fractional derivative transmutes the declared equations to ordinary differential equations. A successful implementation of the proposed improved auxiliary equation technique collects enormous wave solutions in the form of exponential, rational, trigonometric and hyperbolic functions. The found solutions involving many free parameters under consideration of particular values are figured out which appeared in different shape as kink type, anti-kink type, singular kink type, bell shape, anti-bell shape, singular bell shape, cuspon, peakon, periodic etc. The performance of the proposed scheme shows its potentiality through construction of fresh and further general exact traveling wave solutions of three nonlinear equations. A comparison of the achieved outcomes in this investigation with the results found in the literature ensures the diversity and novelty of ours. Consequently, the improved auxiliary equation technique stands as efficient and concise tool which deserves further use to unravel any other nonlinear evolution equations arise in various physical sciences like applied mathematics, mathematical physics and engineering.


1995 ◽  
Vol 10 (27) ◽  
pp. 2019-2028 ◽  
Author(s):  
J.C. BRUNELLI ◽  
ASHOK DAS

We show that the supersymmetric nonlinear Schrödinger equation is a bi-Hamiltonian integrable system. We obtain the two Hamiltonian structures of the theory from the ones of the supersymmetric two-boson hierarchy through a field redefinition. We also show how the two Hamiltonian structures of the supersymmetric KdV equation can also be derived from a Hamiltonian reduction of the supersymmetric two-boson hierarchy.


Sign in / Sign up

Export Citation Format

Share Document