hamiltonian reduction
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Omar Rodríguez-Tzompantzi

In this work, we carry out a study of the conserved quantities and dynamical structure of the four-dimensional modified axion electrodynamics theory described by the axion-photon coupling. In the first part of the analysis, we employ the covariant phase space method to construct the conserved currents and to derive the Noether charges associated with the gauge symmetry of the theory. We further derive the improved energy–momentum tensor using the Belinfante–Rosenfeld procedure, which leads us to the expressions for the energy, momentum, and energy flux densities. Thereafter, with the help of Faddeev–Jackiw’s Hamiltonian reduction formalism, we obtain the relevant fundamental brackets structure for the dynamic variables and the functional measure for determining the quantum transition amplitude. We also confirm that modified axion electrodynamics has three physical degrees of freedom per space point. Moreover, using this symplectic framework, we yield the gauge transformations and the structure of the constraints directly from the zero-modes of the corresponding pre-symplectic matrix.


Author(s):  
Dražen Adamović ◽  
Ozren Perše ◽  
Ivana Vukorepa

We study the representation theory of non-admissible simple affine vertex algebra [Formula: see text]. We determine an explicit formula for the singular vector of conformal weight four in the universal affine vertex algebra [Formula: see text], and show that it generates the maximal ideal in [Formula: see text]. We classify irreducible [Formula: see text]-modules in the category [Formula: see text], and determine the fusion rules between irreducible modules in the category of ordinary modules [Formula: see text]. It turns out that this fusion algebra is isomorphic to the fusion algebra of [Formula: see text]. We also prove that [Formula: see text] is a semi-simple, rigid braided tensor category. In our proofs, we use the notion of collapsing level for the affine [Formula: see text]-algebra, and the properties of conformal embedding [Formula: see text] at level [Formula: see text] from D. Adamovic et al. [Finite vs infinite decompositions in conformal embeddings, Comm. Math. Phys. 348 (2016) 445–473.]. We show that [Formula: see text] is a collapsing level with respect to the subregular nilpotent element [Formula: see text], meaning that the simple quotient of the affine [Formula: see text]-algebra [Formula: see text] is isomorphic to the Heisenberg vertex algebra [Formula: see text]. We prove certain results on vanishing and non-vanishing of cohomology for the quantum Hamiltonian reduction functor [Formula: see text]. It turns out that the properties of [Formula: see text] are more subtle than in the case of minimal reduction.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kevin Nguyen

Abstract The generating functional of stress tensor correlation functions in two-dimensional conformal field theory is the nonlocal Polyakov action, or equivalently, the Liouville or Alekseev-Shatashvili action. I review its holographic derivation within the AdS3/CFT2 correspondence, both in metric and Chern-Simons formulations. I also provide a detailed comparison with the well-known Hamiltonian reduction of three-dimensional gravity to a flat Liouville theory, and conclude that the two results are unrelated. In particular, the flat Liouville action is still off-shell with respect to bulk equations of motion, and simply vanishes in case the latter are imposed. The present study also suggests an interesting re-interpretation of the computation of black hole spectral statistics recently performed by Cotler and Jensen as that of an explicit averaging of the partition function over the boundary source geometry, thereby providing potential justification for its agreement with the predictions of a random matrix ensemble.


2021 ◽  
Vol 133 (10) ◽  
Author(s):  
Martin Lara

AbstractBrouwer’s solution to the artificial satellite problem is revisited. We show that the complete Hamiltonian reduction is rather achieved in the plain Poincaré’s style, through a single canonical transformation, than using a sequence of partial reductions based on von Zeipel’s alternative for dealing with perturbed degenerate Hamiltonian systems. Beyond the theoretical interest of the new approach as regards the complete reduction of perturbed Keplerian motion, we also show that a solution based on a single set of corrections may yield computational benefits in the implementation of an analytic orbit propagator.


Author(s):  
Fatane Mobasheramini ◽  
◽  
Marco Bertola ◽  

We consider the isomonodromic formulation of the Calogero-Painlevé multi-particle systems and proceed to their canonical quantization. We then proceed to the quantum Hamiltonian reduction on a special representation to radial variables, in analogy with the classical case and also with the theory of quantum Calogero equations. This quantized version is compared to the generalization of a result of Nagoya on integral representations of certain solutions of the quantum Painlevé equations. We also provide multi-particle generalizations of these integral representations.


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
George Miloshevich ◽  
Joshua W. Burby

We show that non-relativistic scaling of the collisionless Vlasov–Maxwell system implies the existence of a formal invariant slow manifold in the infinite-dimensional Vlasov–Maxwell phase space. Vlasov–Maxwell dynamics restricted to the slow manifold recovers the Vlasov–Poisson and Vlasov–Darwin models as low-order approximations, and provides higher-order corrections to the Vlasov–Darwin model more generally. The slow manifold may be interpreted to all orders in perturbation theory as a collection of formal Vlasov–Maxwell solutions that do not excite light waves, and are therefore ‘dark’. We provide a heuristic lower bound for the time interval over which Vlasov–Maxwell solutions initialized optimally near the slow manifold remain dark. We also show how the dynamics on the slow manifold naturally inherits a Hamiltonian structure from the underlying system. After expressing this structure in a simple form, we use it to identify a manifestly Hamiltonian correction to the Vlasov–Darwin model. The derivation of higher-order terms is reduced to computing the corrections of the system Hamiltonian restricted to the slow manifold.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Daniel Grumiller ◽  
Jelle Hartong ◽  
Stefan Prohazka ◽  
Jakob Salzer

Abstract We construct various limits of JT gravity, including Newton-Cartan and Carrollian versions of dilaton gravity in two dimensions as well as a theory on the three-dimensional light cone. In the BF formulation our boundary conditions relate boundary connection with boundary scalar, yielding as boundary action the particle action on a group manifold or some Hamiltonian reduction thereof. After recovering in our formulation the Schwarzian for JT, we show that AdS-Carroll gravity yields a twisted warped boundary action. We comment on numerous applications and generalizations.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Kévin Nguyen ◽  
Jakob Salzer

Abstract Starting from an analysis of four-dimensional asymptotically flat gravity in first order formulation, we show that superrotation reparametrization modes are governed by an Alekseev-Shatashvili action on the celestial sphere. This two-dimensional conformal theory describes spontaneous symmetry breaking of Virasoro superrotations together with the explicit symmetry breaking of more general Diff($$ {\mathcal{S}}^2 $$ S 2 ) superrotations. We arrive at this result by first reformulating the asymptotic field equations and symmetries of the radiative vacuum sector in terms of a Chern-Simons theory at null infinity, and subsequently performing a Hamiltonian reduction of this theory onto the celestial sphere.


Author(s):  
M. Fairon ◽  
L. Fehér ◽  
I. Marshall

AbstractWe investigate the trigonometric real form of the spin Ruijsenaars–Schneider system introduced, at the level of equations of motion, by Krichever and Zabrodin in 1995. This pioneering work and all earlier studies of the Hamiltonian interpretation of the system were performed in complex holomorphic settings; understanding the real forms is a non-trivial problem. We explain that the trigonometric real form emerges from Hamiltonian reduction of an obviously integrable ‘free’ system carried by a spin extension of the Heisenberg double of the $${\mathrm{U}}(n)$$ U ( n ) Poisson–Lie group. The Poisson structure on the unreduced real phase space $${\mathrm{GL}}(n,{\mathbb {C}})\times {\mathbb {C}}^{nd}$$ GL ( n , C ) × C nd is the direct product of that of the Heisenberg double and $$d\ge 2$$ d ≥ 2 copies of a $${\mathrm{U}}(n)$$ U ( n ) covariant Poisson structure on $${\mathbb {C}}^n \simeq {\mathbb {R}}^{2n}$$ C n ≃ R 2 n found by Zakrzewski, also in 1995. We reduce by fixing a group valued moment map to a multiple of the identity and analyze the resulting reduced system in detail. In particular, we derive on the reduced phase space the Hamiltonian structure of the trigonometric spin Ruijsenaars–Schneider system and we prove its degenerate integrability.


Sign in / Sign up

Export Citation Format

Share Document