On the Resolvent of the Lévy Process with Matrix-Exponential Distribution of Jumps

2017 ◽  
Vol 68 (12) ◽  
pp. 1884-1899
Author(s):  
E. V. Karnaukh
2017 ◽  
Vol 127 ◽  
pp. 104-110
Author(s):  
Yu-Ting Chen ◽  
Yu-Tzu Chen ◽  
Yuan-Chung Sheu

2014 ◽  
Vol 352 (10) ◽  
pp. 859-864 ◽  
Author(s):  
Arturo Kohatsu-Higa ◽  
Eulalia Nualart ◽  
Ngoc Khue Tran
Keyword(s):  

2007 ◽  
Vol 17 (1) ◽  
pp. 156-180 ◽  
Author(s):  
Florin Avram ◽  
Zbigniew Palmowski ◽  
Martijn R. Pistorius

2014 ◽  
Vol 46 (3) ◽  
pp. 846-877 ◽  
Author(s):  
Vicky Fasen

We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.


2009 ◽  
Vol 41 (04) ◽  
pp. 1005-1022
Author(s):  
Mark Fackrell

A necessary condition for a rational Laplace–Stieltjes transform to correspond to a matrix exponential distribution is that the pole of maximal real part is real and negative. Given a rational Laplace–Stieltjes transform with such a pole, we present a method to determine whether or not the numerator polynomial admits a transform that corresponds to a matrix exponential distribution. The method relies on the minimization of a continuous function of one variable over the nonnegative real numbers. Using this approach, we give an alternative characterization for all matrix exponential distributions of order three.


2009 ◽  
Vol 46 (02) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2018 ◽  
Vol 34 (4) ◽  
pp. 397-408 ◽  
Author(s):  
Søren Asmussen ◽  
Jevgenijs Ivanovs

Sign in / Sign up

Export Citation Format

Share Document