scholarly journals An alternative characterization for matrix exponential distributions

2009 ◽  
Vol 41 (04) ◽  
pp. 1005-1022
Author(s):  
Mark Fackrell

A necessary condition for a rational Laplace–Stieltjes transform to correspond to a matrix exponential distribution is that the pole of maximal real part is real and negative. Given a rational Laplace–Stieltjes transform with such a pole, we present a method to determine whether or not the numerator polynomial admits a transform that corresponds to a matrix exponential distribution. The method relies on the minimization of a continuous function of one variable over the nonnegative real numbers. Using this approach, we give an alternative characterization for all matrix exponential distributions of order three.

2009 ◽  
Vol 41 (4) ◽  
pp. 1005-1022 ◽  
Author(s):  
Mark Fackrell

A necessary condition for a rational Laplace–Stieltjes transform to correspond to a matrix exponential distribution is that the pole of maximal real part is real and negative. Given a rational Laplace–Stieltjes transform with such a pole, we present a method to determine whether or not the numerator polynomial admits a transform that corresponds to a matrix exponential distribution. The method relies on the minimization of a continuous function of one variable over the nonnegative real numbers. Using this approach, we give an alternative characterization for all matrix exponential distributions of order three.


2020 ◽  
Vol 18 (1) ◽  
pp. 353-377 ◽  
Author(s):  
Zhien Li ◽  
Chao Wang

Abstract In this study, we obtain the scalar and matrix exponential functions through a series of quaternion-valued functions on time scales. A sufficient and necessary condition is established to guarantee that the induced matrix is real-valued for the complex adjoint matrix of a quaternion matrix. Moreover, the Cauchy matrices and Liouville formulas for the quaternion homogeneous and nonhomogeneous impulsive dynamic equations are given and proved. Based on it, the existence, uniqueness, and expressions of their solutions are also obtained, including their scalar and matrix forms. Since the quaternion algebra is noncommutative, many concepts and properties of the non-quaternion impulsive dynamic equations are ineffective, we provide several examples and counterexamples on various time scales to illustrate the effectiveness of our results.


2021 ◽  
Vol 71 (6) ◽  
pp. 1581-1598
Author(s):  
Vahid Nekoukhou ◽  
Ashkan Khalifeh ◽  
Hamid Bidram

Abstract The main aim of this paper is to introduce a new class of continuous generalized exponential distributions, both for the univariate and bivariate cases. This new class of distributions contains some newly developed distributions as special cases, such as the univariate and also bivariate geometric generalized exponential distribution and the exponential-discrete generalized exponential distribution. Several properties of the proposed univariate and bivariate distributions, and their physical interpretations, are investigated. The univariate distribution has four parameters, whereas the bivariate distribution has five parameters. We propose to use an EM algorithm to estimate the unknown parameters. According to extensive simulation studies, we see that the effectiveness of the proposed algorithm, and the performance is quite satisfactory. A bivariate data set is analyzed and it is observed that the proposed models and the EM algorithm work quite well in practice.


2005 ◽  
Vol 21 (2-3) ◽  
pp. 377-400 ◽  
Author(s):  
Mark Fackrell

1969 ◽  
Vol 21 ◽  
pp. 1309-1318 ◽  
Author(s):  
James Stewart

Let G be an abelian group, written additively. A complexvalued function ƒ, defined on G, is said to be positive definite if the inequality1holds for every choice of complex numbers C1, …, cn and S1, …, sn in G. It follows directly from (1) that every positive definite function is bounded. Weil (9, p. 122) and Raïkov (5) proved that every continuous positive definite function on a locally compact abelian group is the Fourier-Stieltjes transform of a bounded positive measure, thus generalizing theorems of Herglotz (4) (G = Z, the integers) and Bochner (1) (G = R, the real numbers).If ƒ is a continuous function, then condition (1) is equivalent to the condition that2


2020 ◽  
Vol 137 ◽  
pp. 102067 ◽  
Author(s):  
Gábor Horváth ◽  
Illés Horváth ◽  
Salah Al-Deen Almousa ◽  
Miklós Telek

Sign in / Sign up

Export Citation Format

Share Document