scholarly journals Last Exit Before an Exponential Time for Spectrally Negative Lévy Processes

2009 ◽  
Vol 46 (02) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).

2009 ◽  
Vol 46 (2) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2009 ◽  
Vol 46 (01) ◽  
pp. 85-98 ◽  
Author(s):  
R. L. Loeffen

We consider a modified version of the classical optimal dividends problem of de Finetti in which the objective function is altered by adding in an extra term which takes account of the ruin time of the risk process, the latter being modeled by a spectrally negative Lévy process. We show that, with the exception of a small class, a barrier strategy forms an optimal strategy under the condition that the Lévy measure has a completely monotone density. As a prerequisite for the proof, we show that, under the aforementioned condition on the Lévy measure, theq-scale function of the spectrally negative Lévy process has a derivative which is strictly log-convex.


2009 ◽  
Vol 46 (1) ◽  
pp. 85-98 ◽  
Author(s):  
R. L. Loeffen

We consider a modified version of the classical optimal dividends problem of de Finetti in which the objective function is altered by adding in an extra term which takes account of the ruin time of the risk process, the latter being modeled by a spectrally negative Lévy process. We show that, with the exception of a small class, a barrier strategy forms an optimal strategy under the condition that the Lévy measure has a completely monotone density. As a prerequisite for the proof, we show that, under the aforementioned condition on the Lévy measure, the q-scale function of the spectrally negative Lévy process has a derivative which is strictly log-convex.


2016 ◽  
Vol 48 (1) ◽  
pp. 274-297 ◽  
Author(s):  
Hélène Guérin ◽  
Jean-François Renaud

Abstract We study the distribution Ex[exp(-q∫0t1(a,b)(Xs)ds); Xt ∈ dy], where -∞ ≤ a < b < ∞, and where q, t > 0 and x ∈ R for a spectrally negative Lévy process X. More precisely, we identify the Laplace transform with respect to t of this measure in terms of the scale functions of the underlying process. Our results are then used to price step options and the particular case of an exponential spectrally negative Lévy jump-diffusion model is discussed.


2012 ◽  
Vol 49 (4) ◽  
pp. 1005-1014 ◽  
Author(s):  
Andreas E. Kyprianou ◽  
Curdin Ott

In the setting of the classical Cramér–Lundberg risk insurance model, Albrecher and Hipp (2007) introduced the idea of tax payments. More precisely, if X = {Xt: t≥ 0} represents the Cramér–Lundberg process and, for all t≥ 0, St=sup_{s≤ t}Xs, then Albrecher and Hipp studied Xt - γ St,t≥ 0, where γ∈(0,1) is the rate at which tax is paid. This model has been generalised to the setting that X is a spectrally negative Lévy process by Albrecher, Renaud and Zhou (2008). Finally, Kyprianou and Zhou (2009) extended this model further by allowing the rate at which tax is paid with respect to the process S = {St: t≥ 0} to vary as a function of the current value of S. Specifically, they considered the so-called perturbed spectrally negative Lévy process, Ut:=Xt -∫(0,t]γ(S_u)dSu,t≥ 0, under the assumptions that γ:[0,∞)→ [0,1) and ∫0∞ (1-γ(s))d s =∞. In this article we show that a number of the identities in Kyprianou and Zhou (2009) are still valid for a much more general class of rate functions γ:[0,∞)→∝. Moreover, we show that, with appropriately chosen γ, the perturbed process can pass continuously (i.e. creep) into (-∞, 0) in two different ways.


2006 ◽  
Vol 43 (01) ◽  
pp. 208-220 ◽  
Author(s):  
Martijn Pistorius

In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.


2015 ◽  
Vol 52 (03) ◽  
pp. 665-687
Author(s):  
Esther Frostig

Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid, and the process restarts from 0. When the process reaches a threshold b, all the surplus above b is paid as dividend. Applying the theory of exit times for a spectrally negative Lévy process and its reflection at the maximum and at the minimum, we obtain recursive formulae for the following moments. (i) The moments of the discounted loss until the process reaches b. This is equivalent to the moments of the discounted dividends in the dual model under the barrier strategy. (ii) The moments of the discounted loss for models with and without a dividend barrier for the infinite horizon. (iii) The moments of the discounted dividends for the infinite horizon.


2006 ◽  
Vol 43 (1) ◽  
pp. 208-220 ◽  
Author(s):  
Martijn Pistorius

In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.


2012 ◽  
Vol 49 (04) ◽  
pp. 1005-1014
Author(s):  
Andreas E. Kyprianou ◽  
Curdin Ott

In the setting of the classical Cramér–Lundberg risk insurance model, Albrecher and Hipp (2007) introduced the idea of tax payments. More precisely, if X = {X t : t≥ 0} represents the Cramér–Lundberg process and, for all t≥ 0, S t =sup_{s≤ t}X s , then Albrecher and Hipp studied X t - γ S t ,t≥ 0, where γ∈(0,1) is the rate at which tax is paid. This model has been generalised to the setting that X is a spectrally negative Lévy process by Albrecher, Renaud and Zhou (2008). Finally, Kyprianou and Zhou (2009) extended this model further by allowing the rate at which tax is paid with respect to the process S = {S t : t≥ 0} to vary as a function of the current value of S. Specifically, they considered the so-called perturbed spectrally negative Lévy process, U t :=X t -∫(0,t]γ(S_u)dS u ,t≥ 0, under the assumptions that γ:[0,∞)→ [0,1) and ∫0 ∞ (1-γ(s))d s =∞. In this article we show that a number of the identities in Kyprianou and Zhou (2009) are still valid for a much more general class of rate functions γ:[0,∞)→∝. Moreover, we show that, with appropriately chosen γ, the perturbed process can pass continuously (i.e. creep) into (-∞, 0) in two different ways.


2015 ◽  
Vol 52 (3) ◽  
pp. 665-687
Author(s):  
Esther Frostig

Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid, and the process restarts from 0. When the process reaches a threshold b, all the surplus above b is paid as dividend. Applying the theory of exit times for a spectrally negative Lévy process and its reflection at the maximum and at the minimum, we obtain recursive formulae for the following moments. (i) The moments of the discounted loss until the process reaches b. This is equivalent to the moments of the discounted dividends in the dual model under the barrier strategy. (ii) The moments of the discounted loss for models with and without a dividend barrier for the infinite horizon. (iii) The moments of the discounted dividends for the infinite horizon.


Sign in / Sign up

Export Citation Format

Share Document