3D Localization and Frequency Band Estimation of Multiple Unknown RF Sources Using Particle Filters and a Wireless Sensor Network

2016 ◽  
Vol 90 (4) ◽  
pp. 1889-1902
Author(s):  
Konstantinos A. Gotsis ◽  
Ioannis Kyriakides ◽  
John N. Sahalos
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Baohui Zhang ◽  
Jin Fan ◽  
Guojun Dai ◽  
Tom H. Luan

Location information acquisition is crucial for many wireless sensor network (WSN) applications. While existing localization approaches mainly focus on 2D plane, the emerging 3D localization brings WSNs closer to reality with much enhanced accuracy. Two types of 3D localization algorithms are mainly used in localization application: the range-based localization and the range-free localization. The range-based localization algorithm has strict requirements on hardware and therefore is costly to implement in practice. The range-free localization algorithm reduces the hardware cost but at the expense of low localization accuracy. On addressing the shortage of both algorithms, in this paper, we develop a novel hybrid localization scheme, which utilizes the range-based attribute RSSI and the range-free attribute hopsize, to achieve accurate yet low-cost 3D localization. As anchor node deployment strategy plays an important role in improving the localization accuracy, an anchor node configuration scheme is also developed in this work by utilizing the MIS (maximal independent set) of a network. With proper anchor node configuration and propagation model selection, using simulations, we show that our proposed algorithm improves the localization accuracy by 38.9% compared with 3D DV-HOP and 52.7% compared with 3D centroid.


Sign in / Sign up

Export Citation Format

Share Document