wireless sensor network
Recently Published Documents


TOTAL DOCUMENTS

14667
(FIVE YEARS 5302)

H-INDEX

86
(FIVE YEARS 31)

2022 ◽  
Vol 2022 ◽  
pp. 1-25
Author(s):  
Gang Liu ◽  
Zhaobin Liu ◽  
Victor S. Sheng ◽  
Liang Zhang ◽  
Yuanfeng Yang

In wireless sensor network (WSN), the energy of sensor nodes is limited. Designing efficient routing method for reducing energy consumption and extending the WSN’s lifetime is important. This paper proposes a novel energy-efficient, static scenario-oriented routing method of WSN based on edge computing named the NEER, in which WSN is divided into several areas according to the coverage of gateway (or base station), and each of the areas is regarded as an edge area network (EAN). Each edge area network is abstracted into a weighted undirected graph model combined with the residual energy of the sensor nodes. The base station (or a gateway) calculates the optimal energy consumption path for all sensor nodes within its coverage, and the nodes then perform data transmission through their suggested optimal paths. The proposed method is verified by the simulations, and the results show that the proposed method may consume about 37% less energy compared with the conventional WSN routing protocol and can also effectively extend the lifetime of WSN.


2022 ◽  
Author(s):  
Raoudha Saida ◽  
Yessine Hadj Kacem ◽  
Mohammed S. BenSaleh ◽  
Mohamed Abid

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yue Zhao

Based on the principle of cluster wireless sensor network, this article introduces typical routing protocols in wireless sensors, and wireless sensor network protocol in detail analyzes their advantages and disadvantages and addresses their shortcomings. First, in the clustering network, a uniform clustering protocol with multiple hops in the circular network is proposed. The circular network is divided into rings of equal width, and clusters of equal size are set on different rings. Secondly, the ordinary nodes on each layer of the ring send the collected data to the auxiliary intelligent nodes in the cluster in a single-hop manner, and the auxiliary intelligent nodes located on the outer ring transfer the data to the auxiliary intelligent nodes located on the adjacent inner ring. Finally, on the basis of studying the clustering network protocol, this paper proposes a new clustering routing algorithm, a multihop adaptive clustering routing algorithm. The simulation results show that the algorithm can effectively extend the life of the network, save network energy consumption, and achieve network load balance. At the same time, the initial energy of the auxiliary intelligent node is set according to the energy consumption of the ordinary node and the relative distance between the auxiliary intelligent node and the base station on each layer of the ring. The theoretical and simulation results prove that, compared with the clustered network and auxiliary intelligent nodes, the clustered network can extend the life of the network.


Author(s):  
Andrey Makashov ◽  
Andrew Makhorin ◽  
Maxim Terentiev

A wireless sensor network (WSN) of a tree-like topology is considered, which performs measurements and transmits their results to the consumer. Under the interference influence, the WSN nodes transmitters low power makes the transmitted information vulnerable, which leads to significant data loss. To reduce the data loss during transmission, a noise-immune WSN model is proposed. Such a WSN, having detected a stable connection absence between a pair of nodes, transfers the interaction between these nodes to a radio channel free from interference influence. For this, the model, in addition to forming a network and transferring application data, provides for checking the communication availability based on the keep-alive mechanism and restoring the network with a possible channel change. A feature point of the proposed approach is the ability to restore network connectivity when exposed to interference of significant power and duration, which makes it impossible to exchange service messages on the channel selected for the interaction of nodes. To support the model, work algorithms and data structures have been developed, indicators have been formalized to assess an anti-jamming system work quality.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Shumei Huang

In this paper, wireless sensor network technology is applied to an English-assisted reading system to highly simulate and restore the context and improve the performance of all aspects of the English-assisted reading system to optimize the English-assisted reading system. The product designed in this paper is based on wireless sensor network technology with Linux as the core operating system and supports POSIX (Portable Operating System Interface Standard) standard application development interface; QT is used as the component and framework of the system to support many applications. Based on player open-source multimedia audio and video technology, optimized and tailored for the hardware platform, it well supports multimedia learning and entertainment functions; this paper also adopts open-source database technology based on SQL (Structured Quevy Language) and Berkeley DB, using them as a platform for data storage and access, supporting a million-level thesaurus and high-speed, example sentence search. In this paper, we describe the user’s personalized needs by creating interest models for the user, recommending the text content, and reading order that can help with understanding through the interest models and reading articles and expanding the recommended text range by making expansions to the reading content through references and related articles to further help the user understand the text. Based on the above work, this paper implements an assisted reading system; finally, a multihop self-organizing network system is formed through a wireless sensor network to make the rigid and boring English reading easy and interesting.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Chong Mu

This paper provides an in-depth study and analysis of the optimization of sports event management systems using wireless sensor networks. Aiming at the monitoring task of a directed wireless sensor network in a three-dimensional environment, the directed sensing nodes scattered inside the designated monitoring area in a random deployment manner usually have uneven distribution and other problems; we analyze the characteristics of the directed sensor nodes, probabilistic sensing model, and the cooperative sensing model of multiple sensor nodes for monitoring target points and propose a sensing optimization strategy in polar coordinates to guide the three-dimensional plane directed orientation adjustment and sensing optimization of sensor nodes, thus enhancing the sensing capability of network nodes. The experimental results confirm that the algorithm can improve the coverage of the area to be monitored and the quality of sensing service, and it reduces the overall energy consumption of the network by using the distributed node synchronization scheduling mechanism to extend the life cycle of the network to maintain good monitoring capability under the premise of the limited total usage of the directed nodes in wireless sensor networks. The application of wireless sensor network technology in sports competition management mainly includes the application of smart wearable devices in sports competition training, the application of goal-line technology in sports competition, and the application of eagle eye technology in sports events, all three technologies have certain advantages in the application of sports competition, and all of their help to promote the improvement of sports event management and the development of sports industry; the second aspect is wireless sensor. The second aspect is the application of wireless sensor network technology in sports event information management, which is mainly used to collect information related to sports events and fully utilize it to make sports event management more informative and digital, which is helpful to improve the level of sports event management; the third aspect is the application of wireless sensor network technology in sports event stadium management, which is mainly based on intelligent stadiums to create a more spectator-friendly and good experience for the audience, a more ornamental and good experience viewing place, to promote the development and growth of sports industry.


Sign in / Sign up

Export Citation Format

Share Document