An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty

2014 ◽  
Vol 22 (4) ◽  
pp. 2964-2975 ◽  
Author(s):  
W. Li ◽  
B. Wang ◽  
Y. L. Xie ◽  
G. H. Huang ◽  
L. Liu
2013 ◽  
Vol 16 (1) ◽  
pp. 144-164 ◽  
Author(s):  
Y. L. Xie ◽  
G. H. Huang

In order to deal with the risk of low system stability and unbalanced allocation during water resources management under uncertainties, a risk-averse inexact two-stage stochastic programming model is developed for supporting regional water resources management. Methods of interval-parameter programming and conditional value-at-risk model are introduced into a two-stage stochastic programming framework, thus the developed model can tackle uncertainties described in terms of interval values and probability distributions. In addition, the risk-aversion method was incorporated into the objective function of the water allocation model to reflect the preference of decision makers, such that the trade-off between system economy and extreme expected loss under different water inflows could be analyzed. The proposed model was applied to handle a water resources allocation problem. Several scenarios corresponding to different river inflows and risk levels were examined. The results demonstrated that the model could effectively communicate the interval-format and random uncertainties, and risk aversion into optimization process, and generate inexact solutions that contain a spectrum of water resources allocation options. They could be helpful for seeking cost-effective management strategies under uncertainties. Moreover, it could reflect the decision maker's attitude toward risk aversion, and generate potential options for decision analysis in different system-reliability levels.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
M. Q. Suo ◽  
Y. P. Li ◽  
G. H. Huang ◽  
Y. R. Fan ◽  
Z. Li

An inventory-theory-based inexact multistage stochastic programming (IB-IMSP) method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context. Moreover, it can provide reasonable transferring schemes (i.e., the amount and batch of transferring as well as the corresponding transferring period) associated with various flow scenarios for solving water shortage problems. The applicability of the proposed IB-IMSP is demonstrated by a case study of planning water resources management. The solutions obtained are helpful for decision makers in not only identifying different transferring schemes when the promised water is not met, but also making decisions of water allocation associated with different economic objectives.


Sign in / Sign up

Export Citation Format

Share Document