An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty

2006 ◽  
Vol 29 (5) ◽  
pp. 776-789 ◽  
Author(s):  
Y.P. Li ◽  
G.H. Huang ◽  
S.L. Nie
Author(s):  
Hongguang Chen ◽  
Zhongjun Wang

Abstract The urban water shortage crisis around the world is increasing. In this study, an inexact multi-stage interval-parameter partial information programming model (IMIPM) is proposed for urban water resources planning and management under uncertainties. Optimization techniques of two-stage stochastic programming (TSP), interval-parameter programming (IPP), linear partial information theory (LPI) and multistage stochastic programming (MSP) are combined into one general framework. IMIPM is used to tackle uncertainties like interval numbers, water inflow probabilities expressed as linear partial information, dynamic features in a long planning time and joint probabilities in water resources management. It is applied to Harbin where the manager needs to allocate water from multi-water sources to multi-water users during multi-planning time periods. Four water flow probability scenarios are obtained, which are associated with uncertainties of urban rainfall information. The results show that the dynamics features and uncertainties of system parameters (such as water allocation targets and shortage) are considered in this model by generating a set of representative scenarios within a multistage context. The results also imply that IMIPM can truly reflect the actual urban water resources management situation, and provide managers with decision-making space and technical support to promote the sustainable development of economics and the ecological environment in cities.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
M. Q. Suo ◽  
Y. P. Li ◽  
G. H. Huang ◽  
Y. R. Fan ◽  
Z. Li

An inventory-theory-based inexact multistage stochastic programming (IB-IMSP) method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context. Moreover, it can provide reasonable transferring schemes (i.e., the amount and batch of transferring as well as the corresponding transferring period) associated with various flow scenarios for solving water shortage problems. The applicability of the proposed IB-IMSP is demonstrated by a case study of planning water resources management. The solutions obtained are helpful for decision makers in not only identifying different transferring schemes when the promised water is not met, but also making decisions of water allocation associated with different economic objectives.


Sign in / Sign up

Export Citation Format

Share Document