multistage stochastic programming
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Haoxiang Yang ◽  
Harsha Nagarajan

Contingency research to find optimal operations and postcontingency recovery plans in distribution networks has gained major attention in recent years. To this end, we consider a multiperiod optimal power flow problem in distribution networks, subject to the N – 1 contingency in which a line or distributed energy resource fails. The contingency can be modeled as a stochastic disruption, an event with random magnitude and timing. Assuming a specific recovery time, we formulate a multistage stochastic convex program and develop a decomposition algorithm based on stochastic dual dynamic programming. Realistic modeling features, such as linearized AC power flow physics, engineering limits, and battery devices with realistic efficiency curves, are incorporated. We present extensive computational tests to show the efficiency of our decomposition algorithm and out-of-samplex performance of our solution compared with its deterministic counterpart. Operational insights on battery utilization, component hardening, and length of recovery phase are obtained by performing analyses from stochastic disruption-aware solutions. Summary of Contribution: Stochastic disruptions are random in time and can significantly alter the operating status of a distribution power network. Most of the previous research focuses on the magnitude aspect with a fixed set of time points in which randomness is observed. Our paper provides a novel multistage stochastic programming model for stochastic disruptions, considering both the uncertainty in timing and magnitude. We propose a computationally efficient cutting-plane method to solve this large-scale model and prove the theoretical convergence of such a decomposition algorithm. We present computational results to substantiate and demonstrate the theoretical convergence and provide operational insights into how making infrastructure investments can hedge against stochastic disruptions via sensitivity analyses.


2021 ◽  
Author(s):  
Priyanka Shinde ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Mikael Amelin

<div>The stochastic nature of renewable energy sources has increased the need for intraday trading in electricity markets. Intraday markets provide the possibility to the market participants to modify their market positions based on their updated forecasts. In this paper, we propose a multistage stochastic programming approach to model the trading of a Virtual Power Plant (VPP), comprising thermal, wind and hydro power plants, in the Continuous Intraday (CID) electricity market. The order clearing in the CID market is enabled by the two presented models, namely the Immediate Order Clearing (IOC) and the Partial Order Clearing (POC). We tackle the proposed problem with a modified version of Stochastic Dual Dynamic Programming (SDDP) algorithm. The functionality of our model is demonstrated by performing illustrative and large scale case studies and comparing the performance with a benchmark model.</div>


2021 ◽  
Author(s):  
Priyanka Shinde ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Mikael Amelin

<div>The stochastic nature of renewable energy sources has increased the need for intraday trading in electricity markets. Intraday markets provide the possibility to the market participants to modify their market positions based on their updated forecasts. In this paper, we propose a multistage stochastic programming approach to model the trading of a Virtual Power Plant (VPP), comprising thermal, wind and hydro power plants, in the Continuous Intraday (CID) electricity market. The order clearing in the CID market is enabled by the two presented models, namely the Immediate Order Clearing (IOC) and the Partial Order Clearing (POC). We tackle the proposed problem with a modified version of Stochastic Dual Dynamic Programming (SDDP) algorithm. The functionality of our model is demonstrated by performing illustrative and large scale case studies and comparing the performance with a benchmark model.</div>


2021 ◽  
Vol 13 (1) ◽  
pp. 401
Author(s):  
Woong Bee Choi ◽  
Dongyeol Lee ◽  
Woo Chang Kim

The Korean National Pension Service (NPS) is a partially funded and defined-benefit system. Although the accumulated Fund of the NPS has been increased gradually, this large fund is concerned about depletion in the near future due to the unprecedented aging population and the low fertility rate. In this study, we have developed an asset-liability management (ALM) model that endogenizes variables which were regarded as being exogenous by including them in investable assets. We present the multistage stochastic programming (MSP) formulation incorporating the population structure as a variable that is new to ALM. The optimal portfolio encompassing the investment in raising the fertility rate is obtained. Extending the scope of ALM to social investment is a new approach that has not been attempted in other ALM studies. We demonstrate that socially driven investments can also be a good investment asset in which the NPS should consider to invest.


Author(s):  
Oscar Dowson ◽  
Lea Kapelevich

We present SDDP.jl, an open-source library for solving multistage stochastic programming problems using the stochastic dual dynamic programming algorithm. SDDP.jl is built on JuMP, an algebraic modeling language in Julia. JuMP provides SDDP.jl with a solver-agnostic, user-friendly interface. In addition, we leverage unique features of Julia, such as multiple dispatch, to provide an extensible framework for practitioners to build on our work. SDDP.jl is well tested, and accessible documentation is available at https://github.com/odow/SDDP.jl .


2020 ◽  
Vol 17 (7) ◽  
pp. 3194-3199
Author(s):  
Suparni ◽  
Herman Mawengkang ◽  
Opim Salim Sitompul ◽  
Saib Suwilo

An increasing number of practical scenarios continue to experience problems associated with multistage stochastic programming. This study proposes a decomposition method through which they can be a successful solution to multi-stage stochastic nonlinear programs. The proposed method entails the scenario analysis method. The proposed method also performs its role via search direction generation in such a way that sets of quadratic programming sub-issues are solved in a parallel way, especially when the size is significant lower, compared to the case involving original problems at the respective iterations. Relative to the dual multiplier derivation, which focuses on non-anticipativity constraints, the proposed system advocates for the introduction of generalized reduced gradient approaches.


Sign in / Sign up

Export Citation Format

Share Document