Global well-posedness and time-decay estimates for compressible Navier-Stokes equations with reaction diffusion

Author(s):  
Wenjun Wang ◽  
Huanyao Wen
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Hirokazu Saito

The aim of this paper is to show time-decay estimates of solutions to linearized two-phase Navier-Stokes equations with surface tension and gravity. The original two-phase Navier-Stokes equations describe the two-phase incompressible viscous flow with a sharp interface that is close to the hyperplane xN=0 in the N-dimensional Euclidean space, N≥2. It is well-known that the Rayleigh–Taylor instability occurs when the upper fluid is heavier than the lower one, while this paper assumes that the lower fluid is heavier than the upper one and proves time-decay estimates of Lp-Lq type for the linearized equations. Our approach is based on solution formulas for a resolvent problem associated with the linearized equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Weiliang Xiao ◽  
Jiecheng Chen ◽  
Dashan Fan ◽  
Xuhuan Zhou

We study the Cauchy problem of the fractional Navier-Stokes equations in critical Fourier-Besov spacesFB˙p,q1-2β+3/p′. Some properties of Fourier-Besov spaces have been discussed, and we prove a general global well-posedness result which covers some recent works in classical Navier-Stokes equations. Particularly, our result is suitable for the critical caseβ=1/2. Moreover, we prove the long time decay of the global solutions in Fourier-Besov spaces.


Sign in / Sign up

Export Citation Format

Share Document