scholarly journals Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice

Author(s):  
ZhengXue Ren ◽  
ShuangQuan Zhang ◽  
PengWei Zhao ◽  
Naoyuki Itagaki ◽  
Joachim A. Maruhn ◽  
...  
2018 ◽  
Vol 27 (10) ◽  
pp. 1830007 ◽  
Author(s):  
Pengwei Zhao ◽  
Zhipan Li

The spectroscopic properties play a crucial role in understanding the structure of nuclei, in particular, the shape and shape transitions of nuclei. In recent years, the exotic shapes of nuclear systems, such as the rod and pear shapes, have attracted a lot of attention. Covariant density functional theory (CDFT) has become a standard tool for nuclear structure calculations, and it provides a global and accurate description of nuclear ground states and excitations. In the present paper, we briefly review the recent progress in covariant density functional theory (DFT) for spectroscopic properties of the rod- and pear-shaped nuclei with the cranking calculations in a rotating mean field and the collective Hamiltonian method beyond mean field. The novel linear-chain structure of alpha clustering is discussed with the cranking approach, and low lying spectra of pear-shaped nuclei are illustrated with the quadrupole–octupole collective Hamiltonian.


2013 ◽  
Vol T154 ◽  
pp. 014010 ◽  
Author(s):  
J Meng ◽  
Y Chen ◽  
H Z Liang ◽  
Y F Niu ◽  
Z M Niu ◽  
...  

2018 ◽  
Vol 5 (12) ◽  
pp. 181363 ◽  
Author(s):  
Lisha Zhong ◽  
Stewart F. Parker

In this work, we have used a combination of vibrational spectroscopy (infrared, Raman and inelastic neutron scattering) and periodic density functional theory to investigate the structure of methanesulfonic acid (MSA) in the liquid and solid states. The spectra clearly show that the hydrogen bonding is much stronger in the solid than the liquid state. The structure of MSA is not known; however, mineral acids typically adopt a chain structure in condensed phases. A periodic density functional theory (CASTEP) calculation based on the linear chain structure found in the closely related molecule trifluoromethanesulfonic acid gave good agreement between the observed and calculated spectra, particularly with regard to the methyl and sulfonate groups. The model accounts for the large widths of the asymmetric S-O stretch modes; however, the external mode region is not well described. Together, these observations suggest that the basic model of four molecules in the primitive unit cell, linked by hydrogen bonding into chains, is correct, but that MSA crystallizes in a different space group than that of trifluoromethanesulfonic acid.


2014 ◽  
Vol 89 (5) ◽  
pp. 054029
Author(s):  
J Meng ◽  
P W Zhao ◽  
S Q Zhang ◽  
J N Hu ◽  
J Li

Sign in / Sign up

Export Citation Format

Share Document