Analysis of Ground-state Zero-field Splitting for Mn2+ Ions in [Co(H2O)]XY6 (X=Si, Sn, Pt; Y=F, Cl)

2021 ◽  
Vol 36 (4) ◽  
pp. 595-599
Author(s):  
Jufen Li ◽  
Juan Su ◽  
Xuebin Yi ◽  
Bin Tang ◽  
Xinhui Wu ◽  
...  
1981 ◽  
Vol 107 (2) ◽  
pp. K129-K132
Author(s):  
M. Baran ◽  
A. A. Mirzakhanyan ◽  
E. G. Sharoyan ◽  
H. Szymczak

Author(s):  
A. Chlystov ◽  
S. Lukin ◽  
V. Rudenko ◽  
V. Seleznev ◽  
G. Tsintsadze

1982 ◽  
Vol 13 (7) ◽  
Author(s):  
R. J. VAN ZEE ◽  
R. F. FERRANTE ◽  
K. J. ZERINGUE ◽  
W. JUN. WELTNER

1981 ◽  
Vol 75 (11) ◽  
pp. 5297-5299 ◽  
Author(s):  
R. J. Van Zee ◽  
R. F. Ferrante ◽  
K. J. Zeringue ◽  
W. Weltner

1979 ◽  
Vol 94 (2) ◽  
pp. K129-K131 ◽  
Author(s):  
K. N. Kocharyan ◽  
A. A. Mirzakhanyan ◽  
E. G. Sharoyan

2019 ◽  
Author(s):  
Natalie Rice ◽  
Ivan Popov ◽  
Dominic Russo ◽  
John Bacsa ◽  
Enrique Batista ◽  
...  

Synthetic strategies to yield molecular complexes of high-valent lanthanides, other than the ubiquitous Ce<sup>4+</sup> ion, are exceptionally rare, and thorough, detailed characterization in these systems is limited by complex lifetime and reaction and isolation conditions. The synthesis of high-symmetry complexes in high purity with significant lifetimes in solution and solid-state are essential for determining the role of ligand-field splitting, multiconfigurational behavior, and covalency in governing the reactivity and physical properties of these potentially technologically transformative tetravalent ions. We report the synthesis and physical characterization of an <i>S</i><sub>4</sub> symmetric, four-coordinate tetravalent terbium complex, [Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>] (where Et is ethyl and <i>t</i>Bu is <i>tert</i>-butyl). The ligand field in this complex is weak and the metal-ligand bonds sufficiently covalent so that the tetravalent terbium ion is stable and accessible via a mild oxidant from the anionic, trivalent, terbium precursor, [(Et<sub>2</sub>O)K][Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>]. The significant stability of the tetravalent complex enables its thorough characterization. The step-wise development of the supporting ligand points to key ligand control elements for further extending the known tetravalent lanthanide ions in molecular complexes. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge spectroscopy (XAS), and density functional theory studies indicate a <i>4f<sup>7</sup></i> ground state for [Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>] with considerable zero-field splitting: demonstrating that magnetic, tetravalent lanthanide ions engage in covalent metal-ligand bonds. This result has significant implications for the use of tetravalent lanthanide ions in magnetic applications since the observed zero-field splitting is intermediate between that observed for the trivalent lanthanides and for the transition metals. The similarity of the multiconfigurational behavior in the ground state of [Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>] (measured by Tb L<sub>3</sub>-edge XAS) to that observed in TbO<sub>2</sub> implicates ligand control of multiconfigurational behavior as a key component of the stability of the complex.


Sign in / Sign up

Export Citation Format

Share Document