zero field splitting
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 64)

H-INDEX

51
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Christoph van Wüllen ◽  
Eva M. V. Kessler

Building blocks containing $5d$ spin centres are promising for constructing single molecule magnets due to their large spin-orbit interaction, but experimental and computational results obtained so far indicate that this might not be the case for Re$^\textrm{IV}$ centres in an octahedral environment. Density functional results obtained in this work for [ReCl$_4$(CN)$_2$]$^{2-}$ and trinuclear complexes formed by attaching Mn$^\textrm{II}$ centres to the cyano ligands indicate that zero field splitting in such complexes exhibits large rhombicity (which leads to fast relaxation of the magnetisation) even if there are only small distortions from an ideal geometry with a four-fold symmetry axis. This is already apparent if second-order spin-orbit perturbation theory is applied but even more pronounced if higher-order spin-orbit effects are included as well, as demonstrated by wavefunction based calculations. Computational results are cast into a ligand field model and these simulations show that especially a distortion which is not along the $C_4/C_2$ axeshas a large effect on the rhombicity. Quantum simulations on these complexes are difficult because the zero field splitting strongly depends on the energetic position of the low-lying doublets from the $t_{2g}^3$ configuration.


2021 ◽  
Vol 78 (1) ◽  
pp. 63-69
Author(s):  
Robyn E. Powell ◽  
Martin R. Lees ◽  
Graham J. Tizzard ◽  
Petra J. van Koningsbruggen

The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL − is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1−) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL − ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm−1.


2021 ◽  
Author(s):  
Daniel Kim ◽  
Daniel Wilson ◽  
Majed Fataftah ◽  
Brandon Mercado ◽  
Patrick Holland

We report the synthesis of two complexes featuring unsupported Fe–Fe bonds between a diketiminate/dialdiminate-coordinated iron site and a cyclopentadienyl dicarbonyl iron site. Mössbauer spectroscopy, SQUID magnetometry and computational analysis indicate that the most accurate electronic structure description is with the Fe(CO)2Cp site as low spin iron(0), and it acts as a Lewis base toward the high spin iron(II) of the LFe fragment which is a Lewis acid. In both compounds, the three-coordinate high-spin iron(II) site has large zero-field splitting (zfs), up to D = –50 cm–1.


2021 ◽  
Author(s):  
Kazimer Skubi ◽  
Reagan Hooper ◽  
Brandon Mercado ◽  
Melissa Bollmeyer ◽  
Samantha MacMillan ◽  
...  

SCS pincer ligands have an interesting combination of strong-field and weak-field donors that is also present in the nitrogenase active site. Here, we explore the electronic structures of iron(II) and iron(III) complexes with such a pincer ligand, bearing a monodentate phosphine, thiolate S donor, amide N donor, ammonia, or CO. The ligand scaffold features a protonresponsive thioamide site, and the protonation state of the ligand greatly influences the reduction potential of iron in the phosphine complex. The N–H bond dissociation free energy can be quantitated as 56 ± 2 kcal/mol. EPR spectroscopy and SQUID magnetometry measurements show that the iron(III) complexes with S and N as the fourth donors have an intermediate spin (S = 3/2) ground state with large zero field splitting, and X-ray absorption spectra show high Fe–S covalency. The Mössbauer spectrum changes drastically with the position of a nearby alkali metal cation in the iron(III) amido complex, and DFT calculations explain this phenomenon through a change between having the doubly-occupied orbital as dz2 or dyz, as the former is more influenced by the nearby positive charge.


Author(s):  
Yuan Jiao ◽  
Fu-Ning Jin ◽  
Si-Si Feng ◽  
Ai Wang ◽  
Ulli Englert

The self-assembly reaction of (+)-dibenzoyltartaric acid (D-H2DBTA) with 2,2′-bipyridine (bpy) and Mn(CH3CO2)2·4H2O yielded a new coordination polymer, namely, catena-poly[[[diaqua(2,2′-bipyridine-κ2 N,N′)manganese(II)]-μ-2,3-bis(benzoyloxy)butanedioato-κ2 O 2:O 3] dihydrate], {[Mn(C18H12O8)(C10H8N2)(H2O)2]·2H2O} n or {[Mn(DBTA)(bpy)(H2O)2]·2H2O} n , (I). Complex (I) has been characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA) and single-crystal and powder X-ray diffraction. It crystallizes in the orthorhombic space group P212121. In the complex, the Mn2+ cation displays a distorted octahedral {MnO4N2} geometry, formed from two carboxylate O atoms of two DBTA2− ligands, two cis-oriented N atoms from one chelating 2,2′-bipyridine ligand and two trans-oriented O atoms from coordinated water molecules. The polymer displays a 1D chain with an Mn...Mn distance of 9.428 (1) Å. Due to the presence of flexible polycarboxylate and rigid bipyridyl ligands in the molecular structure, a high thermal stability of the complex is attained. The magnetic properties of (I) were analyzed based on the mononuclear Mn2+ model due to the long intramolecular Mn...Mn distance. The zero field splitting (ZFS) contribution in the high-spin Mn2+ cation is almost negligible and there are weak antiferromagnetic couplings between 1D chains [zJ′ = −0.062 (5) cm−1], corresponding to an intermolecular Mn...Mn distance of 7.860 (2) Å.


Author(s):  
Mirjam Schröder ◽  
Daniel Rauber ◽  
Clemens Matt ◽  
Christopher W. M. Kay

AbstractTesting and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the $$B_{1}$$ B 1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy.


IUCrJ ◽  
2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Emil Andreasen Klahn ◽  
Emil Damgaard-Møller ◽  
Lennard Krause ◽  
Iurii Kibalin ◽  
Arsen Gukasov ◽  
...  

In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX 2tmtu2 [X = Cl(1) and Br(2), tmtu = tetramethylthiourea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bisector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the d xy orbital to be stabilized relative to the d xz and d yz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of d xy and d x 2  −  y 2 . Experimental d-orbital populations support this interpretation, showing in addition that the metal–ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.


2021 ◽  
Vol 36 (4) ◽  
pp. 595-599
Author(s):  
Jufen Li ◽  
Juan Su ◽  
Xuebin Yi ◽  
Bin Tang ◽  
Xinhui Wu ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Krishnendu Ghosh ◽  
He Ma ◽  
Mykyta Onizhuk ◽  
Vikram Gavini ◽  
Giulia Galli

AbstractUnderstanding the quantum dynamics of spin defects and their coherence properties requires an accurate modeling of spin-spin interaction in solids and molecules, for example by using spin Hamiltonians with parameters obtained from first principles calculations. We present a real-space approach based on density functional theory for the calculation of spin-Hamiltonian parameters, where only selected atoms are treated at the all-electron level, while the rest of the system is described with the pseudopotential approximation. Our approach permits calculations for systems containing more than 1000 atoms, as demonstrated for defects in diamond and silicon carbide. We show that only a small number of atoms surrounding the defect needs to be treated at the all-electron level, in order to obtain an overall all-electron accuracy for hyperfine and zero-field splitting tensors. We also present results for coherence times, computed with the cluster correlation expansion method, highlighting the importance of accurate spin-Hamiltonian parameters for quantitative predictions of spin dynamics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


Sign in / Sign up

Export Citation Format

Share Document