prostate segmentation
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 74)

H-INDEX

24
(FIVE YEARS 8)

Author(s):  
Baris Turkbey ◽  
Masoom A. Haider

Prostate cancer (PCa) is the most common cancer type in males in the Western World. MRI has an established role in diagnosis of PCa through guiding biopsies. Due to multistep complex nature of the MRI-guided PCa diagnosis pathway, diagnostic performance has a big variation. Developing artificial intelligence (AI) models using machine learning, particularly deep learning, has an expanding role in radiology. Specifically, for prostate MRI, several AI approaches have been defined in the literature for prostate segmentation, lesion detection and classification with the aim of improving diagnostic performance and interobserver agreement. In this review article, we summarize the use of radiology applications of AI in prostate MRI.


Author(s):  
Luke A Matkovic ◽  
Tonghe Wang ◽  
Yang Lei ◽  
Oladunni O Akin-Akintayo ◽  
Olayinka A Abiodun Ojo ◽  
...  

Abstract Focal dose boost to dominant intraprostatic lesions (DILs) has recently been proposed for prostate radiation therapy. Accurate and fast delineation of the prostate and DILs is thus required during treatment planning. We propose a learning-based method using positron emission tomography (PET)/computed tomography (CT) images to automatically segment the prostate and its DILs. To enable end-to-end segmentation, a deep learning-based method, called cascaded regional-Net, is utilized. The first network, referred to as dual attention network (DAN), is used to segment the prostate via extracting comprehensive features from both PET and CT images. A second network, referred to as mask scoring regional convolutional neural network (MSR-CNN), is used to segment the DILs from the PET and CT within the prostate region. Scoring strategy is used to diminish the misclassification of the DILs. For DIL segmentation, the proposed cascaded regional-Net uses two steps to remove normal tissue regions, with the first step cropping images based on prostate segmentation and the second step using MSR-CNN to further locate the DILs. The binary masks of DILs and prostates of testing patients are generated from PET/CT by the trained network. To evaluate the proposed method, we retrospectively investigated 49 PET/CT datasets. On each dataset, the prostate and DILs were delineated by physicians and set as the ground truths and training targets. The proposed method was trained and evaluated using a five-fold cross-validation and a hold-out test. The mean surface distance and DSC values were 0.666±0.696mm and 0.932±0.059 for the prostate and 1.209±1.954mm and 0.757±0.241 for the DILs among all 49 patients. The proposed method has demonstrated great potential for improving the efficiency and reducing the observer variability of prostate and DIL contouring for DIL focal boost prostate radiation therapy.


2021 ◽  
Author(s):  
Davide Barra ◽  
Giulia Nicoletti ◽  
Arianna Defeudis ◽  
Simone Mazzetti ◽  
Jovana Panic ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1690
Author(s):  
Mohammed R. S. Sunoqrot ◽  
Kirsten M. Selnæs ◽  
Elise Sandsmark ◽  
Sverre Langørgen ◽  
Helena Bertilsson ◽  
...  

Volume of interest segmentation is an essential step in computer-aided detection and diagnosis (CAD) systems. Deep learning (DL)-based methods provide good performance for prostate segmentation, but little is known about the reproducibility of these methods. In this work, an in-house collected dataset from 244 patients was used to investigate the intra-patient reproducibility of 14 shape features for DL-based segmentation methods of the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones (non-PZ) on T2-weighted (T2W) magnetic resonance (MR) images compared to manual segmentations. The DL-based segmentation was performed using three different convolutional neural networks (CNNs): V-Net, nnU-Net-2D, and nnU-Net-3D. The two-way random, single score intra-class correlation coefficient (ICC) was used to measure the inter-scan reproducibility of each feature for each CNN and the manual segmentation. We found that the reproducibility of the investigated methods is comparable to manual for all CNNs (14/14 features), except for V-Net in PZ (7/14 features). The ICC score for segmentation volume was found to be 0.888, 0.607, 0.819, and 0.903 in PZ; 0.988, 0.967, 0.986, and 0.983 in non-PZ; 0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-3D, respectively. The results of this work show the feasibility of embedding DL-based segmentation in CAD systems, based on multiple T2W MR scans of the prostate, which is an important step towards the clinical implementation.


Author(s):  
Hamid Moradi ◽  
Amir Hossein Foruzan

Accurate delineation of the prostate in MR images is an essential step for treatment planning and volume estimation of the organ. Prostate segmentation is a challenging task due to its variable size and shape. Moreover, neighboring tissues have a low-contrast with the prostate. We propose a robust and precise automatic algorithm to define the prostate’s boundaries in MR images in this paper. First, we find the prostate’s ROI by a deep neural network and decrease the input image’s size. Next, a dynamic multi-atlas-based approach obtains the initial segmentation of the prostate. A watershed algorithm improves the initial segmentation at the next stage. Finally, an SSM algorithm keeps the result in the domain of allowable prostate shapes. The quantitative evaluation of 74 prostate volumes demonstrated that the proposed method yields a mean Dice coefficient of [Formula: see text]. In comparison with recent researches, our algorithm is robust against shape and size variations.


2021 ◽  
Vol 71 ◽  
pp. 102039
Author(s):  
Kelei He ◽  
Chunfeng Lian ◽  
Ehsan Adeli ◽  
Jing Huo ◽  
Yang Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document