Chemical weathering and CO2 consumption of a high-erosion-rate karstic river: a case study of the Sanchahe River, southwest China

2015 ◽  
Vol 34 (4) ◽  
pp. 601-609 ◽  
Author(s):  
Yanling An ◽  
Yiliang Hou ◽  
Qixin Wu ◽  
Lin Qing ◽  
Longbo Li
2020 ◽  
Vol 17 ◽  
pp. 118-134
Author(s):  
Roshan Dahal

Revised Universal Soil Loss Equation (RUSLE) model is applied in this study to evaluate the risk of erosion in Kathmandu district. The calculation of erosion requires certain data from various sources available in different formats and scales. Geographic Information System (GIS) was used which allowed considerable time savings in the processing of spatial data, screening the effects of each factor affecting soil erosion. Among various erosion factors, topography, rainfall, soil properties, and soil conservation practices were used for the study. Average soil loss was calculated by multiplying these factors. Final results of soil erosion rates were separated into six classes based on erosion severity, in which 2.18% of land (> 80Mg ha-1yr-1), followed by 2.85% of land (40-80 Mg ha-1yr-1), 5.56% of land (20-40 Mg ha-1yr-1), 8.73% of land (10-20 Mg ha-1yr-1), 10.53% of land (5-10 Mg ha-1yr-1) and 70.14% of land (0-5 Mg ha-1yr-1), falls under very severe, severe, very high, moderate and low severity zone respectively. Area having high slope length (LS) factor has high erosion rate. In Dakshinkali, Nagarjun and Budanilkantha area, there is high erosion rate. From the result, spatial distribution of soil erosion across Kathmandu district, can be applied for management and controlling the erosion.


Author(s):  
Feng Ouyang ◽  
Zhijiao Chen ◽  
Mingjie Tang ◽  
Yahui Zhang
Keyword(s):  

2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Daniela V. Machado ◽  
Camila R. e Silva ◽  
Eduardo D. Marques ◽  
Gabriel S. de Almeida ◽  
Emmanoel V. Silva-Filho

Sign in / Sign up

Export Citation Format

Share Document