Conservation Genetics
Latest Publications


TOTAL DOCUMENTS

2557
(FIVE YEARS 282)

H-INDEX

59
(FIVE YEARS 7)

Published By Springer-Verlag

1572-9737, 1566-0621

Author(s):  
Kimberley G. Barrett ◽  
Geneviève Amaral ◽  
Melanie Elphinstone ◽  
Malcolm L. McAdie ◽  
Corey S. Davis ◽  
...  

AbstractCaptive breeding is often a last resort management option in the conservation of endangered species which can in turn lead to increased risk of inbreeding depression and loss of genetic diversity. Thus, recording breeding events via studbook for the purpose of estimating relatedness, and facilitating mating pair selection to minimize inbreeding, is common practice. However, as founder relatedness is often unknown, loss of genetic variation and inbreeding cannot be entirely avoided. Molecular genotyping is slowly being adopted in captive breeding programs, however achieving sufficient resolution can be challenging in small, low diversity, populations. Here, we evaluate the success of the Vancouver Island marmot (Marmota vancouverensis; VIM; among the worlds most endangered mammals) captive breeding program in preventing inbreeding and maintaining genetic diversity. We explored the use of high-throughput amplicon sequencing of microsatellite regions to assay greater genetic variation in both captive and wild populations than traditional length-based fragment analysis. Contrary to other studies, this method did not considerably increase diversity estimates, suggesting: (1) that the technique does not universally improve resolution, and (2) VIM have exceedingly low diversity. Studbook estimates of pairwise relatedness and inbreeding in the current population were weakly, but positively, correlated to molecular estimates. Thus, current studbooks are moderately effective at predicting genetic similarity when founder relatedness is known. Finally, we found that captive and wild populations did not differ in allelic frequencies, and conservation efforts to maintain diversity have been successful with no significant decrease in diversity over the last three generations.


Author(s):  
Regina L. Cunha ◽  
Adjany Costa ◽  
Filipa Godinho ◽  
Carmen Santos ◽  
Rita Castilho

Author(s):  
Mikael Åkesson ◽  
Øystein Flagstad ◽  
Jouni Aspi ◽  
Ilpo Kojola ◽  
Olof Liberg ◽  
...  

AbstractTransboundary connectivity is a key component when conserving and managing animal species that require large areas to maintain viable population sizes. Wolves Canis lupus recolonized the Scandinavian Peninsula in the early 1980s. The population is geographically isolated and relies on immigration to not lose genetic diversity and to maintain long term viability. In this study we address (1) to what extent the genetic diversity among Scandinavian wolves has recovered during 30 years since its foundation in relation to the source populations in Finland and Russia, (2) if immigration has occurred from both Finland and Russia, two countries with very different wolf management and legislative obligations to ensure long term viability of wolves, and (3) if immigrants can be assumed to be unrelated. Using 26 microsatellite loci we found that although the genetic diversity increased among Scandinavian wolves (n = 143), it has not reached the same levels found in Finland (n = 25) or in Russia (n = 19). Low genetic differentiation between Finnish and Russian wolves, complicated our ability to determine the origin of immigrant wolves (n = 20) with respect to nationality. Nevertheless, based on differences in allelic richness and private allelic richness between the two countries, results supported the occurrence of immigration from both countries. A priori assumptions that immigrants are unrelated is non-advisable, since 5.8% of the pair-wise analyzed immigrants were closely related. To maintain long term viability of wolves in Northern Europe, this study highlights the potential and need for management actions that facilitate transboundary dispersal.


Author(s):  
John S. Hargrove ◽  
David C. Kazyak ◽  
Barbara A. Lubinski ◽  
Karli M. Rogers ◽  
Olivia K. Bowers ◽  
...  

Author(s):  
Marina Reyne ◽  
Kara Dicks ◽  
Claire McFarlane ◽  
Aurélie Aubry ◽  
Mark Emmerson ◽  
...  

AbstractMolecular methods can play a crucial role in species management and conservation. Despite the usefulness of genetic approaches, they are often not explicitly included as part of species recovery plans and conservation practises. The Natterjack toad (Epidalea calamita) is regionally Red-Listed as Endangered in Ireland. The species is declining and is now present at just seven sites within a highly restricted range. This study used 13 highly polymorphic microsatellite markers to analyse the population genetic diversity and structure. Genetic diversity was high with expected heterozygosity between 0.55 and 0.61 and allelic richness between 4.77 and 5.92. Effective population sizes were small (Ne < 100 individuals), but not abnormal for pond breeding amphibians. However, there was no evidence of historical or contemporary genetic bottlenecks or high levels of inbreeding. We identified a positive relationship between Ne and breeding pond surface area, suggesting that environmental factors are a key determinant of population size. Significant genetic structuring was detected throughout the species’ range, and we identified four genetic entities that should be considered in the species’ conservation strategies. Management should focus on preventing further population declines and future loss of genetic diversity overall and within genetic entities while maintaining adequate local effective population size through site-specific protection, human-mediated translocations and head-start programs. The apparent high levels of genetic variation give hope for the conservation of Ireland’s rarest amphibian if appropriately protected and managed.


Author(s):  
Carolyn Enloe ◽  
W. Andrew Cox ◽  
Akanksha Pandey ◽  
Sabrina S. Taylor ◽  
Stefan Woltmann ◽  
...  

Author(s):  
Rian Bylsma ◽  
Danielle K. Walkup ◽  
Toby J. Hibbitts ◽  
Wade A. Ryberg ◽  
Andrew N. Black ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document