scholarly journals Nonexpansive maps with surjective displacement

Author(s):  
Brian Lins
Keyword(s):  
1997 ◽  
Vol 18 (5-6) ◽  
pp. 447-454 ◽  
Author(s):  
Sehie Park ◽  
Sehie Park ◽  
S. p. Singh ◽  
B. Watson ◽  
T. E. Williamson

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Aftab Hussain ◽  
Nawab Hussain ◽  
Danish Ali

We introduce a new iterative method in this article, called the D iterative approach for fixed point approximation. Analytically, and also numerically, we demonstrate that our established D I.P is faster than the well-known I.P of the prior art. Finally, in a uniformly convex Banach space environment, we present weak as well as strong convergence theorems for Suzuki’s generalized nonexpansive maps. Our findings are an extension, refinement, and induction of several existing iterative literatures.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Maryam A. Alghamdi ◽  
Sompong Dhompongsa ◽  
Naseer Shahzad

A common fixed point theorem for a pair of maps satisfying condition (C) is proved under certain conditions. We extend the well-knownDeMarr's fixed point theorem to the case of noncommuting family of maps satisfying condition (C). As for an application, an invariant approximation theorem is also derived.


2019 ◽  
Vol 99 (2) ◽  
pp. 262-273 ◽  
Author(s):  
M. VEENA SANGEETHA

Given two (real) normed (linear) spaces $X$ and $Y$, let $X\otimes _{1}Y=(X\otimes Y,\Vert \cdot \Vert )$, where $\Vert (x,y)\Vert =\Vert x\Vert +\Vert y\Vert$. It is known that $X\otimes _{1}Y$ is $2$-UR if and only if both $X$ and $Y$ are UR (where we use UR as an abbreviation for uniformly rotund). We prove that if $X$ is $m$-dimensional and $Y$ is $k$-UR, then $X\otimes _{1}Y$ is $(m+k)$-UR. In the other direction, we observe that if $X\otimes _{1}Y$ is $k$-UR, then both $X$ and $Y$ are $(k-1)$-UR. Given a monotone norm $\Vert \cdot \Vert _{E}$ on $\mathbb{R}^{2}$, we let $X\otimes _{E}Y=(X\otimes Y,\Vert \cdot \Vert )$ where $\Vert (x,y)\Vert =\Vert (\Vert x\Vert _{X},\Vert y\Vert _{Y})\Vert _{E}$. It is known that if $X$ is uniformly rotund in every direction, $Y$ has the weak fixed point property for nonexpansive maps (WFPP) and $\Vert \cdot \Vert _{E}$ is strictly monotone, then $X\otimes _{E}Y$ has WFPP. Using the notion of $k$-uniform rotundity relative to every $k$-dimensional subspace we show that this result holds with a weaker condition on $X$.


Sign in / Sign up

Export Citation Format

Share Document