uniformly convex
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 121)

H-INDEX

30
(FIVE YEARS 3)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 273
Author(s):  
Mujahid Abbas ◽  
Muhammad Waseem Asghar ◽  
Manuel De la Sen

The aim of this paper is to propose a new faster iterative scheme (called AA-iteration) to approximate the fixed point of (b,η)-enriched contraction mapping in the framework of Banach spaces. It is also proved that our iteration is stable and converges faster than many iterations existing in the literature. For validity of our proposed scheme, we presented some numerical examples. Further, we proved some strong and weak convergence results for b-enriched nonexpansive mapping in the uniformly convex Banach space. Finally, we approximate the solution of delay fractional differential equations using AA-iterative scheme.


Author(s):  
Arian Bërdëllima ◽  
Florian Lauster ◽  
D. Russell Luke

AbstractWe extend to p-uniformly convex spaces tools from the analysis of fixed point iterations in linear spaces. This study is restricted to an appropriate generalization of single-valued, pointwise averaged mappings. Our main contribution is establishing a calculus for these mappings in p-uniformly convex spaces, showing in particular how the property is preserved under compositions and convex combinations. This is of central importance to splitting algorithms that are built by such convex combinations and compositions, and reduces the convergence analysis to simply verifying that the individual components have the required regularity pointwise at fixed points of the splitting algorithms. Our convergence analysis differs from what can be found in the previous literature in that the regularity assumptions are only with respect to fixed points. Indeed we show that, if the fixed point mapping is pointwise nonexpansive at all cluster points, then these cluster points are in fact fixed points, and convergence of the sequence follows. Additionally, we provide a quantitative convergence analysis built on the notion of gauge metric subregularity, which we show is necessary for quantifiable convergence estimates. This allows one for the first time to prove convergence of a tremendous variety of splitting algorithms in spaces with curvature bounded from above.


2022 ◽  
Vol 27 (1) ◽  
pp. 91-101
Author(s):  
Prabavathy Magadevan ◽  
Saravanan Karpagam ◽  
Erdal Karapınar

In this manuscript, p-cyclic orbital ϕ-contraction map over closed, nonempty, convex subsets of a uniformly convex Banach space X possesses a unique best proximity point if the auxiliary function ϕ is strictly increasing. The given result unifies and extend some existing results in the related literature. We provide an illustrative example to indicate the validity of the observed result.


Author(s):  
Thomas Weighill ◽  
Takamitsu Yamauchi ◽  
Nicolò Zava

AbstractWe consider infinite-dimensional properties in coarse geometry for hyperspaces consisting of finite subsets of metric spaces with the Hausdorff metric. We see that several infinite-dimensional properties are preserved by taking the hyperspace of subsets with at most n points. On the other hand, we prove that, if a metric space contains a sequence of long intervals coarsely, then its hyperspace of finite subsets is not coarsely embeddable into any uniformly convex Banach space. As a corollary, the hyperspace of finite subsets of the real line is not coarsely embeddable into any uniformly convex Banach space. It is also shown that every (not necessarily bounded geometry) metric space with straight finite decomposition complexity has metric sparsification property.


2021 ◽  
Vol 26 (5) ◽  
pp. 66-71
Author(s):  
Shahram Najafzadeh

In this paper, by using univalent functions connected with the strip domain,parabolic starlike and parabolic uniformly convex functions are introduced.Some relations between these classes are proved.


Author(s):  
Syed Ghoos Ali Shah ◽  
Saqib Hussain ◽  
Saima Noor ◽  
Maslina Darus ◽  
Ibrar Ahmad

In this present paper, we introduce and explore certain new classes of uniformly convex and starlike functions related to the Liu–Owa integral operator. We explore various properties and characteristics, such as coefficient estimates, rate of growth, distortion result, radii of close-to-convexity, starlikeness, convexity, and Hadamard product. It is important to mention that our results are a generalization of the number of existing results in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3109
Author(s):  
Chanchal Garodia ◽  
Afrah A. N. Abdou ◽  
Izhar Uddin

In this paper, we present a new modified iteration process in the setting of uniformly convex Banach space. The newly obtained iteration process can be used to approximate a common fixed point of three nonexpansive mappings. We have obtained strong and weak convergence results for three nonexpansive mappings. Additionally, we have provided an example to support the theoretical proof. In the process, several relevant results are improved and generalized.


2021 ◽  
Author(s):  
Huu Nhu Vu

Abstract In this paper, we consider a Levenberg–Marquardt method with general regularization terms that are uniformly convex on bounded sets to solve the ill-posed inverse problems in Banach spaces, where the forward mapping might not Gˆateaux differentiable and the image space is unnecessarily reflexive. The method therefore extends the one proposed by Jin and Yang in (Numer. Math. 133:655–684, 2016) for smooth inverse problem setting with globally uniformly convex regularization terms. We prove a novel convergence analysis of the proposed method under some standing assumptions, in particular, the generalized tangential cone condition and a compactness assumption. All these assumptions are fulfilled when investigating the identification of the heat source for semilinear elliptic boundary-value problems with a Robin boundary condition, a heat source acting on the boundary, and a possibly non-smooth nonlinearity. Therein, the Clarke subdifferential of the non-smooth nonlinearity is employed to construct the family of bounded operators that is a replacement for the nonexisting Gˆateaux derivative of the forward mapping. The efficiency of the proposed method is illustrated with a numerical example.


2021 ◽  
Vol 26 (02) ◽  
pp. 162-171
Author(s):  
P. Sukprasert ◽  
V. Yang ◽  
R. Khunprasert ◽  
W. Khuangsatung

Sign in / Sign up

Export Citation Format

Share Document