nonexpansive mappings
Recently Published Documents


TOTAL DOCUMENTS

1952
(FIVE YEARS 315)

H-INDEX

65
(FIVE YEARS 4)

10.29007/2mn6 ◽  
2022 ◽  
Author(s):  
Trung Hieu Nguyen

The equilibrium problem and its generalizations had a great influence in the development of some branches of pure and applied sciences. The equilibrium problems theory provides a natural and novel approach for some problems arising in nonlinear analysis, physics and engineering, image reconstruction, economics, finance, game theory and optimization. In recent times, there were many methods in order to solve the equilibrium problem and its generalizations. Some authors proposed many iterative methods and studied the convergence of such iterative methods for equilibrium problems and nonexpansive mappings in the setting of Hilbert spaces and Banach spaces. Note that a generalized mixed equilibrium problem is a generalization of an equilibrium problem and a Bregman totally quasi-asymptotically nonexpansive mapping is a generalization of a nonexpansive mapping in reflexive Banach spaces. The purpose of this paper is to combine the parallel method with the Bregman distance and the Bregman projection in order to introduce a new parallel hybrid iterative process which is to find common solutions of a finite family of Bregman totally quasi-asymptotically nonexpansive mappings and a system of generalized mixed equilibrium problems. After that, we prove that the proposed iteration strongly converges to the Bregman projection of initial element on the intersection of common fixed point set of a finite family of Bregman totally quasi-asymptotically nonexpansive mappings and the solution set of a system of generalized mixed equilibrium problems in reflexive Banach spaces. As application, we obatin some strong convergence results for a Bregman totally quasi-asymptotically nonexpansive mapping and a generalized mixed equilibrium problem in reflexive Banach spaces. These results are extensions and improvements to the main results in [7, 8]. In addition, a numerical example is provided to illustrate for the obtained result.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Vasile Berinde

For approximating the fixed points of enriched nonexpansive mappings in Hilbert spaces, we consider a modified Krasnosel’skiǐ–Mann algorithm for which we prove a strong convergence theorem. We also empirically compare the rate of convergence of the modified Krasnosel’skiǐ–Mann algorithm and of the simple Krasnosel’skiǐ fixed point algorithm. Based on the numerical experiments reported in the paper we conclude that, for the class of enriched nonexpansive mappings, it is more convenient to work with the simple Krasnosel’skiǐ fixed point algorithm than with the modified Krasnosel’skiǐ–Mann algorithm.


2022 ◽  
Vol 183 (3-4) ◽  
pp. 169-201
Author(s):  
Xavier Allamigeon ◽  
Marin Boyet ◽  
Stéphane Gaubert

We study timed Petri nets, with preselection and priority routing. We represent the behavior of these systems by piecewise affine dynamical systems. We use tools from the theory of nonexpansive mappings to analyze these systems. We establish an equivalence theorem between priority-free fluid timed Petri nets and semi-Markov decision processes, from which we derive the convergence to a periodic regime and the polynomial-time computability of the throughput. More generally, we develop an approach inspired by tropical geometry, characterizing the congestion phases as the cells of a polyhedral complex. We illustrate these results by a current application to the performance evaluation of emergency call centers in the Paris area. We show that priorities can lead to a paradoxical behavior: in certain regimes, the throughput of the most prioritary task may not be an increasing function of the resources.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Monairah Alansari ◽  
Mohammad Farid ◽  
Rehan Ali

AbstractThe aim of this paper is to introduce and study an inertial hybrid iterative method for solving generalized equilibrium problems involving Bregman relatively nonexpansive mappings in Banach spaces. We study the strong convergence for the proposed algorithm. Finally, we list some consequences and computational example to emphasize the efficiency and relevancy of main result.


2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Awad A. Bakery ◽  
OM Kalthum S. K. Mohamed

For different premodular, which is a generalization of modular, defined by weighted Orlicz sequence space and its prequasi operator ideal, we have examined the existence of a fixed point for both Kannan contraction and nonexpansive mappings acting on these spaces. Some numerous numerical experiments and practical applications are presented to support our results.


2022 ◽  
Vol 7 (2) ◽  
pp. 1775-1790
Author(s):  
Nipa Jun-on ◽  
◽  
Raweerote Suparatulatorn ◽  
Mohamed Gamal ◽  
Watcharaporn Cholamjiak ◽  
...  

<abstract><p>This study investigates the weak convergence of the sequences generated by the inertial technique combining the parallel monotone hybrid method for finding a common fixed point of a finite family of $ G $-nonexpansive mappings under suitable conditions in Hilbert spaces endowed with graphs. Some numerical examples are also presented, providing applications to signal recovery under situations without knowing the type of noises. Besides, numerical experiments of the proposed algorithms, defined by different types of blurred matrices and noises on the algorithm, are able to show the efficiency and the implementation for LASSO problem in signal recovery.</p></abstract>


2021 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Austine Efut Ofem ◽  
Unwana Effiong Udofia ◽  
Donatus Ikechi Igbokwe

This paper presents a new iterative algorithm for approximating the fixed points of multivalued generalized \(\alpha\)–nonexpansive mappings. We study the stability result of our new iterative algorithm for a larger concept of stability known as weak \(w^2\)–stability. Weak and strong convergence results of the proposed iterative algorithm are also established. Furthermore, we show numerically that our new iterative algorithm outperforms several known iterative algorithms for multivalued generalized \(\alpha\)–nonexpansive mappings. Again, as an application, we use our proposed iterative algorithm to find the solution of nonlinear Volterra delay integro-differential equations. Finally, we provide an illustrative example to validate the mild conditions used in the result of the application part of this study. Our results improve, generalize and unify several results in the existing literature.


Axioms ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Kifayat Ullah ◽  
Junaid Ahmad ◽  
Muhammad Arshad ◽  
Zhenhua Ma

In this article, we introduce the class of enriched Suzuki nonexpansive (ESN) mappings. We show that this new class of mappings properly contains the class of Suzuki nonexpansive as well as the class of enriched nonexpansive mappings. We establish existence of fixed point and convergence of fixed point in a Hilbert space setting under the Krasnoselskii iteration process. One of the our main results is applied to solve a split feasibility problem (SFP) in this new setting of mappings. Our main results are a significant improvement of the corresponding results of the literature.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Nawab Hussain ◽  
Saud M. Alsulami ◽  
Hind Alamri

Iterative algorithms have been utilized for the computation of approximate solutions of stationary and evolutionary problems associated with differential equations. The aim of this article is to introduce concepts of monotone Reich and Chatterjea nonexpansive mappings on partially ordered Banach spaces. We describe sufficient conditions for the existence of an approximate fixed-point sequence (AFPS) and prove certain fixed-point results using the Krasnoselskii–Ishikawa iterative algorithm. Moreover, we present some interesting examples to highlight the superiority of our results. Lastly, we provide both weak and strong convergence results for such mappings and consider an application of our results to prove the existence of a solution to an initial value problem.


Sign in / Sign up

Export Citation Format

Share Document