Two dimensional tensor product B-spline wavelet scaling functions for the solution of two-dimensional unsteady diffusion equations

2008 ◽  
Vol 7 (3) ◽  
pp. 258-262 ◽  
Author(s):  
Lei Xiong ◽  
Haijiao Li ◽  
Lewen Zhang
2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


2018 ◽  
Vol 13 (5) ◽  
pp. 553-563 ◽  
Author(s):  
Xiaolei Zhang ◽  
Guishan Zhang ◽  
Yangjiang Yu ◽  
Guocheng Pan ◽  
Haitao Deng ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
María A. Navascués ◽  
Ram Mohapatra ◽  
Md. Nasim Akhtar

In this paper, we define fractal bases and fractal frames of L2(I×J), where I and J are real compact intervals, in order to approximate two-dimensional square-integrable maps whose domain is a rectangle, using the identification of L2(I×J) with the tensor product space L2(I)⨂L2(J). First, we recall the procedure of constructing a fractal perturbation of a continuous or integrable function. Then, we define fractal frames and bases of L2(I×J) composed of product of such fractal functions. We also obtain weaker families as Bessel, Riesz and Schauder sequences for the same space. Additionally, we study some properties of the tensor product of the fractal operators associated with the maps corresponding to each variable.


Sign in / Sign up

Export Citation Format

Share Document