spline functions
Recently Published Documents


TOTAL DOCUMENTS

779
(FIVE YEARS 69)

H-INDEX

45
(FIVE YEARS 2)

2021 ◽  
Vol 20 ◽  
pp. 41-53
Author(s):  
Grzegorz Lenda ◽  
Dominika Spytkowska

The shape of the surface of shell structures, measured by laser scanning, can be modelled using approximating spline functions. Since the 1990s, several modelling techniques have been developed: based on points, meshes, areas outlined on meshes, regions grouping areas with a similar structure. The most effective of them have been used in modern software, but their implementations differ significantly. The most important differences concern the accuracy of modelling, especially places with rapid shape changes, including edges. The differences also affect the mathematical complexity of the created model (the number of unknowns) and the time of its development. These factors contribute to the effectiveness of modelling. Some methods work fully automatically, others allow manual selection of certain parameters, there are also methods that require full manual control. Their selection and application is greatly affected by the user’s intuition and knowledge in the field of creating such surfaces. This study tested the influence of the above factors on the modelling efficiency. A total of six methods of creating spline surfaces were analysed in three software packages of different classes: Geomagic Design X, Solidworks and RhinoResurf. The analyses were carried out on a shell structure of complex shape, consisting of seven patches separated by edges. The created models were assessed in terms of their accuracy of fitting into the point cloud. Additionally, the complexity of the model expressed in the number of control points and the time of its development were determined. The results confirmed the validity of the four methods in terms of model fitting accuracy. The best results were achieved using the semi-automatic method in the most advanced software package and the manual method in the simplest package. This has confirmed the great importance of user experience in terms of theoretical properties of spline functions. However, complexity and development time did not show a direct relationship with the accuracy of the models created. ANALIZA EFEKTYWNOŚCI METOD TWORZENIA POWIERZCHNI SKLEJANYCH DLA MODELOWANIA OBIEKTÓW POWŁOKOWYCH Modelowanie kształtu powierzchni obiektów powłokowych, pomierzonych za pomocą skaningu laserowego, można przeprowadzić za pomocą aproksymacyjnych funkcji sklejanych. Funkcje te dobrze przybliżają kształty o ciągłej krzywiźnie, jakimi są powłoki, jednocześnie wykazując spadki dokładności w miejscach zerwania tej ciągłości. Od lat 90. XX wieku rozwinęło się kilka technik modelowania za ich pomocą, m.in.: wykorzystujących same punkty, siatki mesh, obszary obrysowane na siatkach mesh, regiony grupujące obszary o podobnej strukturze. Najbardziej skuteczne z nich zostały zastosowane we współczesnym oprogramowaniu, ale ich implementacje znacząco się pomiędzy sobą różnią. Najważniejsze różnice dotyczą dokładności modelowania, szczególnie miejsc o szybkich zmianach kształtu, włączając w nie krawędzie. Różnice dotyczą też złożoności matematycznej utworzonego modelu (liczby niewiadomych) oraz czasu jego opracowania. Czynniki te składają się na efektywność modelowania. Część metod działa w pełni automatycznie, inne pozwalają na ręczny dobór pewnych parametrów, są też metody wymagające pełnego sterowania ręcznego. W ich wyborze i stosowaniu duże znaczenie ma intuicja i wiedza użytkownika w zakresie tworzenia tego typu powierzchni. W opracowaniu przetestowano wpływ powyższych czynników na efektywność modelowania. Badaniom poddano łącznie sześć metod tworzenia powierzchni sklejanych w trzech pakietach oprogramowania różnej klasy: Geomagic Design X, Solidworks i RhinoResurf. Analizy przeprowadzono na obiekcie powłokowym o złożonym kształcie, składającym się z siedmiu płatów rozdzielonych krawędziami. Został on pomierzony metodą skaningu laserowego, a scalona chmura punktów stanowiła podstawę do modelowania za pomocą funkcji sklejanych. Utworzone modele oceniono pod względem dokładności wpasowania w chmurę punktów za pomocą wykresów odchyłek punktów od powierzchni, odchyłek średnich oraz maksymalnych. Dodatkowo określono złożoność modelu wyrażoną liczbą punktów kontrolnych oraz czas jego opracowania. Wyniki pozwoliły na potwierdzenie skuteczności czterech metod w zakresie dokładności wpasowania modeli. Najlepsze efekty osiągnięto stosując metodę półautomatyczną w najbardziej zaawansowanym pakiecie oprogramowania oraz metodę ręczną w najprostszym z pakietów. Potwierdza to duże znaczenie doświadczenia użytkownika w zakresie teoretycznych własności funkcji sklejanych. Złożoność i czas opracowania nie wykazywały natomiast bezpośredniego związku z dokładnością tworzonych modeli.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3182
Author(s):  
Gabriela Cristescu ◽  
Vlad-Florin Drăgoi ◽  
Sorin Horaţiu Hoară

Some properties of generalized convexity for sets and functions are identified in case of the reliability polynomials of two dual minimal networks. A method of approximating the reliability polynomials of two dual minimal network is developed based on their mutual complementarity properties. The approximating objects are from the class of quadratic spline functions, constructed based on both interpolation conditions and shape knowledge. It is proved that the approximant objects preserve both the high-order convexity and some extremum properties of the exact reliability polynomials. It leads to pointing out the area of the network where the maximum number of paths is achieved. Numerical examples and simulations show the performance of the algorithm, both in terms of low complexity, small error and shape preserving. Possibilities of increasing the accuracy of approximation are discussed.


Author(s):  
Ozlem Ersoy Hepson ◽  
Idris Dag ◽  
Bülent Saka ◽  
Buket Ay

Abstract Integration using least squares method in space and Crank–Nicolson approach in time is managed to set up an algorithm to solve the RLW equation numerically. Trial functions in the least square method consist of a combination of the quartic B-spline functions. Integration of the RLW equation gives a system of algebraic equations. The solutions consisting of a combination of the quartic B-splines are given for some initial and boundary value problems of RLW equation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
K. R. Raslan ◽  
Khalid K. Ali ◽  
Mohamed S. Mohamed ◽  
Adel R. Hadhoud

AbstractIn this paper, we present a new structure of the n-dimensional trigonometric cubic B-spline collocation algorithm, which we show in three different formats: one-, two-, and three-dimensional. These constructs are critical for solving mathematical models in different fields. We illustrate the efficiency and accuracy of the proposed method by its application to a few two- and three-dimensional test problems. We use other numerical methods available in the literature to make comparisons.


2021 ◽  
Vol 42 (6supl2) ◽  
pp. 3977-3990
Author(s):  
Diego Helcias Cavalcante ◽  
◽  
Carlos Syllas Monteiro Luz ◽  
Marcelo Richelly Alves de Oliveira ◽  
Wéverton José Lima Fonseca ◽  
...  

B-spline functions have been used in random regression models (RRM) to model animal weight from birth to adulthood because they are less vulnerable to common difficulties of other methods. However, its application to model growth traits of Polled Nellore cattle has been little studied. Therefore, this study aimed to evaluate polynomial functions of different orders and segment numbers to model effects associated with the Polled Nellore cattle growth curve. For this purpose, we used 15,148 weight records of 3,115 animals aged between 1 and 660 days and reared in northern Brazil and born between 1995 and 2010. Random effects were modeled using B-spline polynomials. As random effects, we considered the direct and maternal genetic additives, as well as direct and maternal permanent environments. As fixed effects were included contemporary group, cow age at calving (linear and quadratic) and fourth-order Legendre polynomials to represent average growth curve. The residue was modeled by considering seven age classes. The bestfitted model was the one that considered cubic B-spline functions with four knots for direct additive genetic effects and three knots for maternal genetic, animal permanent environment, and maternal permanent environment effects (C6555). Therefore, covariance functions under B-spline polynomials are efficient and can be used to model the growth curve of Polled Nellore cattle from birth to 660 days of age.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2276
Author(s):  
Salah Eddargani ◽  
María José Ibáñez ◽  
Abdellah Lamnii ◽  
Mohamed Lamnii ◽  
Domingo Barrera

In this work, we study quasi-interpolation in a space of sextic splines defined over Powell–Sabin triangulations. These spline functions are of class C2 on the whole domain but fourth-order regularity is required at vertices and C3 regularity is imposed across the edges of the refined triangulation and also at the interior point chosen to define the refinement. An algorithm is proposed to define the Powell–Sabin triangles with a small area and diameter needed to construct a normalized basis. Quasi-interpolation operators which reproduce sextic polynomials are constructed after deriving Marsden’s identity from a more explicit version of the control polynomials introduced some years ago in the literature. Finally, some tests show the good performance of these operators.


Sign in / Sign up

Export Citation Format

Share Document