scholarly journals Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces

Author(s):  
Tadahiro Oh ◽  
Yuzhao Wang

AbstractIn this paper, we study the one-dimensional cubic nonlinear Schrödinger equation (NLS) on the circle. In particular, we develop a normal form approach to study NLS in almost critical Fourier-Lebesgue spaces. By applying an infinite iteration of normal form reductions introduced by the first author with Z. Guo and S. Kwon (2013), we derive a normal form equation which is equivalent to the renormalized cubic NLS for regular solutions. For rough functions, the normal form equation behaves better than the renormalized cubic NLS, thus providing a further renormalization of the cubic NLS. We then prove that this normal form equation is unconditionally globally well-posed in the Fourier-Lebesgue spaces ℱLp($${\cal F}{L^p}(\mathbb{T})$$ ℱ L p ( T ) ), 1 ≤ p < ∞. By inverting the transformation, we conclude global well-posedness of the renormalized cubic NLS in almost critical Fourier-Lebesgue spaces in a suitable sense. This approach also allows us to prove unconditional uniqueness of the (renormalized) cubic NLS in ℱLp($${\cal F}{L^p}(\mathbb{T})$$ ℱ L p ( T ) ) for $$1 \leq p \leq {3 \over 2}$$ 1 ≤ p ≤ 3 2 .

2019 ◽  
Vol 109 (1) ◽  
pp. 44-67 ◽  
Author(s):  
JUSTIN FORLANO ◽  
TADAHIRO OH ◽  
YUZHAO WANG

We study the stochastic cubic nonlinear Schrödinger equation (SNLS) with an additive noise on the one-dimensional torus. In particular, we prove local well-posedness of the (renormalized) SNLS when the noise is almost space–time white noise. We also discuss a notion of criticality in this stochastic context, comparing the situation with the stochastic cubic heat equation (also known as the stochastic quantization equation).


Author(s):  
Rupert L. Frank ◽  
David Gontier ◽  
Mathieu Lewin

AbstractIn this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb–Thirring constant when the eigenvalues of a Schrödinger operator $$-\Delta +V(x)$$ - Δ + V ( x ) are raised to the power $$\kappa $$ κ is never given by the one-bound state case when $$\kappa >\max (0,2-d/2)$$ κ > max ( 0 , 2 - d / 2 ) in space dimension $$d\ge 1$$ d ≥ 1 . When in addition $$\kappa \ge 1$$ κ ≥ 1 we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo–Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021. https://doi.org/10.1007/s00205-021-01634-7). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.


Sign in / Sign up

Export Citation Format

Share Document