best constant
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Michael Ruzhansky ◽  
Nurgissa Yessirkegenov

In this paper, we investigate critical Gagliardo–Nirenberg, Trudinger-type and Brezis–Gallouet–Wainger inequalities associated with the positive Rockland operators on graded Lie groups, which include the cases of [Formula: see text], Heisenberg, and general stratified Lie groups. As an application, using the critical Gagliardo–Nirenberg inequality, the existence of least energy solutions of nonlinear Schrödinger type equations is obtained. We also express the best constant in the critical Gagliardo–Nirenberg and Trudinger inequalities in the variational form as well as in terms of the ground state solutions of the corresponding nonlinear subelliptic equations. The obtained results are already new in the setting of general stratified Lie groups (homogeneous Carnot groups). Among new technical methods, we also extend Folland’s analysis of Hölder spaces from stratified Lie groups to general homogeneous Lie groups.


Author(s):  
Rupert L. Frank ◽  
David Gontier ◽  
Mathieu Lewin

AbstractIn this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb–Thirring constant when the eigenvalues of a Schrödinger operator $$-\Delta +V(x)$$ - Δ + V ( x ) are raised to the power $$\kappa $$ κ is never given by the one-bound state case when $$\kappa >\max (0,2-d/2)$$ κ > max ( 0 , 2 - d / 2 ) in space dimension $$d\ge 1$$ d ≥ 1 . When in addition $$\kappa \ge 1$$ κ ≥ 1 we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo–Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021. https://doi.org/10.1007/s00205-021-01634-7). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bing He ◽  
Yong Hong ◽  
Zhen Li

AbstractFor the Hilbert type multiple integral inequality $$ \int _{\mathbb{R}_{+}^{n}} \int _{\mathbb{R}_{+}^{m}} K\bigl( \Vert x \Vert _{m,\rho }, \Vert y \Vert _{n, \rho }\bigr) f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \leq M \Vert f \Vert _{p, \alpha } \Vert g \Vert _{q, \beta } $$ ∫ R + n ∫ R + m K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) f ( x ) g ( y ) d x d y ≤ M ∥ f ∥ p , α ∥ g ∥ q , β with a nonhomogeneous kernel $K(\|x\|_{m, \rho }, \|y\|_{n, \rho })=G(\|x\|^{\lambda _{1}}_{m, \rho }/ \|y\|^{\lambda _{2}}_{n, \rho })$ K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) = G ( ∥ x ∥ m , ρ λ 1 / ∥ y ∥ n , ρ λ 2 ) ($\lambda _{1}\lambda _{2}> 0$ λ 1 λ 2 > 0 ), in this paper, by using the weight function method, necessary and sufficient conditions that parameters p, q, $\lambda _{1}$ λ 1 , $\lambda _{2}$ λ 2 , α, β, m, and n should satisfy to make the inequality hold for some constant M are established, and the expression formula of the best constant factor is also obtained. Finally, their applications in operator boundedness and operator norm are also considered, and the norms of several integral operators are discussed.


2021 ◽  
Vol 172 (1) ◽  
Author(s):  
Baofeng Lai ◽  
Runqiu Wang

AbstractIn this paper, we obtain the best constant and the equality condition for a class of mixed-norm Hardy inequalities when the weight is a power function. By building and solving the corresponding Euler equation, we look for the best constant and the optimal function. One of the main ingredients is to introduce two key auxiliary functions so that the corresponding equalities are derived.


Author(s):  
VERÓNICA DIMANT ◽  
DANIEL GALICER ◽  
JORGE TOMÁS RODRÍGUEZ

Abstract The polarization constant of a Banach space X is defined as \[{\text{c}}(X){\text{ }}{\text{ }}\mathop {\lim }\limits_{k \to \infty } {\text{ }}\sup {\text{c}}{(k,X)^{\frac{1}{k}}},\] where \[{\text{c}}(k,X)\] stands for the best constant \[C > 0\] such that \[\mathop P\limits^ \vee \leqslant CP\] for every k-homogeneous polynomial \[P \in \mathcal{P}{(^k}X)\] . We show that if X is a finite dimensional complex space then \[{\text{c}}(X) = 1\] . We derive some consequences of this fact regarding the convergence of analytic functions on such spaces. The result is no longer true in the real setting. Here we relate this constant with the so-called Bochnak’s complexification procedure. We also study some other properties connected with polarization. Namely, we provide necessary conditions related to the geometry of X for \[c(2,X) = 1\] to hold. Additionally we link polarization constants with certain estimates of the nuclear norm of the product of polynomials.


2021 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Alex Garivaltis

This note provides a neat and enjoyable expansion and application of the magnificent Ordentlich-Cover theory of “universal portfolios”. I generalize Cover’s benchmark of the best constant-rebalanced portfolio (or 1-linear trading strategy) in hindsight by considering the best bilinear trading strategy determined in hindsight for the realized sequence of asset prices. A bilinear trading strategy is a mini two-period active strategy whose final capital growth factor is linear separately in each period’s gross return vector for the asset market. I apply Thomas Cover’s ingenious performance-weighted averaging technique to construct a universal bilinear portfolio that is guaranteed (uniformly for all possible market behavior) to compound its money at the same asymptotic rate as the best bilinear trading strategy in hindsight. Thus, the universal bilinear portfolio asymptotically dominates the original (1-linear) universal portfolio in the same technical sense that Cover’s universal portfolios asymptotically dominate all constant-rebalanced portfolios and all buy-and-hold strategies. In fact, like so many Russian dolls, one can get carried away and use these ideas to construct an endless hierarchy of ever more dominant H-linear universal portfolios.


Author(s):  
Van Hoang Nguyen

We first establish a family of sharp Caffarelli–Kohn–Nirenberg type inequalities (shortly, sharp CKN inequalities) on the Euclidean spaces and then extend them to the setting of Cartan–Hadamard manifolds with the same best constant. The quantitative version of these inequalities also is proved by adding a non-negative remainder term in terms of the sectional curvature of manifolds. We next prove several rigidity results for complete Riemannian manifolds supporting the Caffarelli–Kohn–Nirenberg type inequalities with the same sharp constant as in the Euclidean space of the same dimension. Our results illustrate the influence of curvature to the sharp CKN inequalities on the Riemannian manifolds. They extend recent results of Kristály (J. Math. Pures Appl. 119 (2018), 326–346) to a larger class of the sharp CKN inequalities.


2021 ◽  
Vol 19 (1) ◽  
pp. 400-411
Author(s):  
Bing He ◽  
Yong Hong ◽  
Qiang Chen

Abstract In this paper, we establish equivalent parameter conditions for the validity of multiple integral half-discrete Hilbert-type inequalities with the nonhomogeneous kernel G ( n λ 1 ∥ x ∥ m , ρ λ 2 ) G\left({n}^{{\lambda }_{1}}\parallel x{\parallel }_{m,\rho }^{{\lambda }_{2}}\hspace{-0.16em}) ( λ 1 λ 2 > 0 {\lambda }_{1}{\lambda }_{2}\gt 0 ) and obtain best constant factors of the inequalities in specific cases. In addition, we also discuss their applications in operator theory.


Sign in / Sign up

Export Citation Format

Share Document