bifurcation structures
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 44 (1) ◽  
pp. A57-A76
Author(s):  
Nicolas Boullé ◽  
Patrick E. Farrell ◽  
Alberto Paganini

2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
François Kapche Tagne ◽  
Guillaume Honoré KOM ◽  
Marceline Motchongom Tingue ◽  
Pierre Kisito Talla ◽  
V. Kamdoum Tamba

The dynamics of an integer-order and fractional-order Lorenz like system called Shimizu-Morioka system is investigated in this paper. It is shown thatinteger-order Shimizu-Morioka system displays bistable chaotic attractors, monostable chaotic attractors and coexistence between bistable and monostable chaotic attractors. For suitable choose of parameters, the fractional-order Shimizu-Morioka system exhibits bistable chaotic attractors, monostable chaotic attractors, metastable chaos (i.e. transient chaos) and spiking oscillations. The bifurcation structures reveal that the fractional-order derivative affects considerably the dynamics of Shimizu-Morioka system. The chain fractance circuit is used to designand implement the integer- and fractional-order Shimizu-Morioka system in Pspice. A close agreement is observed between PSpice based circuit simulations and numerical simulations analysis. The results obtained in this work were not reported previously in the interger as well as in fractional-order Shimizu-Morioka system and thus represent an important contribution which may help us in better understanding of the dynamical behavior of this class of systems.


Author(s):  
Lixiang Wei ◽  
Jiangang Zhang ◽  
Xinlei An ◽  
Mengran Nan ◽  
Shuai Qiao

Neurons contain a large number of ions inside and outside the cell, and the transmembrane currents formed by the movement of these ions cause membrane potential fluctuations and induce electromagnetism inside and outside the cell. In addition, any change in external electromagnetic fields can cause changes in the membrane potential of the neurons. Therefore, based on the three-dimensional Hindmarsh — Rose (HR) neuron model, a five-dimensional neuron model with time delay is developed in this paper by introducing flux and electric field variables and considering the resulting time delay. First, the Hopf bifurcation theory is used to demonstrate the local stability of the system at the equilibrium point at different time delays. Then, the stability of the Hopf bifurcation and its direction are proved by using the central flow shape theorem. Finally, the existence of the Hopf bifurcation is proved using the phase diagram and the bifurcation diagram, and the effects of several important parameters on the model are investigated by numerical simulations using time series plots, ISI bifurcation plots and two-parameter bifurcation plots. The model is found to be accompanied by chaotic and chaos-free plus-periodic bifurcation structures, mixed-mode discharges and other phenomena. Also, its discharge pattern can be controlled after adding time delay. The results of this paper provide help to the pathogenic mechanism and control of neurological diseases.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Alanna Hoyer-Leitzel ◽  
Sarah Iams

AbstractSavanna ecosystems are shaped by the frequency and intensity of regular fires. We model savannas via an ordinary differential equation (ODE) encoding a one-sided inhibitory Lotka–Volterra interaction between trees and grass. By applying fire as a discrete disturbance, we create an impulsive dynamical system that allows us to identify the impact of variation in fire frequency and intensity. The model exhibits three different bistability regimes: between savanna and grassland; two savanna states; and savanna and woodland. The impulsive model reveals rich bifurcation structures in response to changes in fire intensity and frequency—structures that are largely invisible to analogous ODE models with continuous fire. In addition, by using the amount of grass as an example of a socially valued function of the system state, we examine the resilience of the social value to different disturbance regimes. We find that large transitions (“tipping”) in the valued quantity can be triggered by small changes in disturbance regime.


2021 ◽  
Author(s):  
Solveig A. van der Vegt ◽  
Liudmila Polonchuk ◽  
Ken Wang ◽  
Sarah L. Waters ◽  
Ruth E. Baker

AbstractAutoimmune myocarditis is a rare, but frequently fatal, side effect of immune checkpoint inhibitors (ICIs), a class of cancer therapies. Despite extensive experimental work on the causes, development and progression of this disease, much still remains unknown about the importance of the different immunological pathways involved. We present a mathematical model of autoimmune myocarditis and the effects of ICIs on its development and progression to either resolution or chronic inflammation. From this, we gain a better understanding of the role of immune cells, cytokines and other components of the immune system in driving the cardiotoxicity of ICIs. We parameterise the model using existing data from the literature, and show that qualitative model behaviour is consistent with disease characteristics seen in patients in an ICI-free context. The bifurcation structures of the model show how the presence of ICIs increases the risk of developing autoimmune myocarditis. This predictive modelling approach is a first step towards determining treatment regimens that balance the benefits of treating cancer with the risk of developing autoimmune myocarditis.


2021 ◽  
Vol 31 (11) ◽  
pp. 2130033
Author(s):  
J. Leonel Rocha ◽  
Abdel-Kaddous Taha

This paper aims to study the nonlinear dynamics and bifurcation structures of a new mathematical model of the [Formula: see text]-Ricker population model with a Holling type II per-capita birth function, where the Allee effect parameter is [Formula: see text]. A generalized [Formula: see text]-Lambert function is defined on the 3D parameters space to determine the existence and variation of the number of nonzero fixed points of the homographic [Formula: see text]-Ricker maps considered. The singularity points of the generalized [Formula: see text]-Lambert function are identified with the cusp points on a fold bifurcation of the homographic [Formula: see text]-Ricker maps. In this approach, the application of the transcendental generalized [Formula: see text]-Lambert function is demonstrated based on the analysis of local and global bifurcation structures of this three-parameter family of homographic maps. Some numerical studies are included to illustrate the theoretical results.


2021 ◽  
Author(s):  
Vanessa Steindorf ◽  
Sergio Oliva

Dengue fever is endemic in tropical and sub-tropical countries, and some of the important features of Dengue fever spread continues to pose challenges for mathematical modelling. Here, we propose a system of integro-differential equations (IDE) to study the disease transmission dynamics that involves multiserotypes and cross immunity. Our main objective is to incorporate and analyze the effect of a general time delay term describing acquired cross immunity protection and the effect of antibody dependent enhancement (ADE), both characteristics of Dengue fever. We perform qualitative analysis of the model and obtain results to show the stability of the epidemiologically important steady solutions that is completely determined by the basic reproduction number and the invasion reproduction number. We establish the global dynamics, by constructing suitable Lyapunov functions. We also conduct some numerical experiments to illustrate bifurcation structures, indicating the occurrence of periodic oscillations for specific range of values of a key parameter representing the ADE.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150121
Author(s):  
Munehisa Sekikawa ◽  
Naohiko Inaba

In recently published work [Inaba & Kousaka, 2020a; Inaba & Tsubone, 2020b], we discovered significant mixed-mode oscillation (MMO) bifurcation structures in which MMOs are nested. Simple mixed-mode oscillation-incrementing bifurcations (MMOIBs) are known to generate [Formula: see text] oscillations for successive [Formula: see text] between regions of [Formula: see text]- and [Formula: see text]-oscillations, where [Formula: see text] and [Formula: see text] are adjacent simple MMOs, e.g. [Formula: see text] and [Formula: see text], where [Formula: see text] is an integer. MMOIBs are universal phenomena of evidently strong order and have been studied extensively in chemistry, physics, and engineering. Nested MMOIBs are phenomena that are more complex, but have an even stronger order, generating chaotic MMO windows that include sequences [Formula: see text] for successive [Formula: see text], where [Formula: see text] and [Formula: see text] are adjacent MMOIB-generated MMOs, i.e. [Formula: see text] and [Formula: see text] for integer [Formula: see text]. Herein, we investigate the bifurcation structures of nested MMOIB-generated MMOs exhibited by a classical forced Bonhoeffer–van der Pol oscillator. We use numerical methods to prepare two- and one-parameter bifurcation diagrams of the system with [Formula: see text], and 3 for successive [Formula: see text] for the case [Formula: see text]. Our analysis suggests that nested MMOs could be widely observed and are clearly ordered phenomena. We then define the first return maps for nested MMOs, which elucidate the appearance of successively nested MMOIBs.


Sign in / Sign up

Export Citation Format

Share Document