scholarly journals Subexponential decay and regularity estimates for eigenfunctions of localization operators

Author(s):  
Federico Bastianoni ◽  
Nenad Teofanov

AbstractWe consider time-frequency localization operators $$A_a^{\varphi _1,\varphi _2}$$ A a φ 1 , φ 2 with symbols a in the wide weighted modulation space $$ M^\infty _{w}({\mathbb {R}^{2d}})$$ M w ∞ ( R 2 d ) , and windows $$ \varphi _1, \varphi _2 $$ φ 1 , φ 2 in the Gelfand–Shilov space $$\mathcal {S}^{\left( 1\right) }(\mathbb {R}^d)$$ S 1 ( R d ) . If the weights under consideration are of ultra-rapid growth, we prove that the eigenfunctions of $$A_a^{\varphi _1,\varphi _2}$$ A a φ 1 , φ 2 have appropriate subexponential decay in phase space, i.e. that they belong to the Gelfand–Shilov space $$ \mathcal {S}^{(\gamma )} (\mathbb {R^{d}}) $$ S ( γ ) ( R d ) , where the parameter $$\gamma \ge 1 $$ γ ≥ 1 is related to the growth of the considered weight. An important role is played by $$\tau $$ τ -pseudodifferential operators $$Op_{\tau } (\sigma )$$ O p τ ( σ ) . In that direction we show convenient continuity properties of $$Op_{\tau } (\sigma )$$ O p τ ( σ ) when acting on weighted modulation spaces. Furthermore, we prove subexponential decay and regularity properties of the eigenfunctions of $$Op_{\tau } (\sigma )$$ O p τ ( σ ) when the symbol $$\sigma $$ σ belongs to a modulation space with appropriately chosen weight functions. As an auxiliary result we also prove new convolution relations for (quasi-)Banach weighted modulation spaces.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Nenad Teofanov

We introduce a class of bilinear localization operators and show how to interpret them as bilinear Weyl pseudodifferential operators. Such interpretation is well known in linear case whereas in bilinear case it has not been considered so far. Then we study continuity properties of both bilinear Weyl pseudodifferential operators and bilinear localization operators which are formulated in terms of a modified version of modulation spaces.


Author(s):  
Nadia Ben Hamadi ◽  
Zineb Hafirassou

For the Hankel–Stockwell transform, the Price uncertainty principle is proved, we define the Localization operators and we study their boundedness and compactness. We also show that these operators belong to the so-called Schatten–von Neumann class.


2016 ◽  
Vol 28 (5) ◽  
pp. 854-876 ◽  
Author(s):  
G. A. M. VELASCO ◽  
M. DÖRFLER

We study functions whose time-frequency content are concentrated in a compact region in phase space using time-frequency localization operators as a main tool. We obtain approximation inequalities for such functions using a finite linear combination of eigenfunctions of these operators, as well as a local Gabor system covering the region of interest. These would allow the construction of modified time-frequency dictionaries concentrated in the region.


Sign in / Sign up

Export Citation Format

Share Document