eigenvalue estimates
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 34)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miklos Ronto ◽  
Eli Pollak ◽  
Rocco Martinazzo

AbstractRitz eigenvalues only provide upper bounds for the energy levels, while obtaining lower bounds requires at least the calculation of the variances associated with these eigenvalues. The well-known Weinstein and Temple lower bounds based on the eigenvalues and variances converge very slowly and their quality is considerably worse than that of the Ritz upper bounds. Lehmann presented a method that in principle optimizes Temple’s lower bounds with significantly improved results. We have recently formulated a Self-Consistent Lower Bound Theory (SCLBT), which improves upon Temple’s results. In this paper, we further improve the SCLBT and compare its quality with Lehmann’s theory. The Lánczos algorithm for constructing the Hamiltonian matrix simplifies Lehmann’s theory and is essential for the SCLBT method. Using two lattice Hamiltonians, we compared the improved SCLBT (iSCLBT) with its previous implementation as well as with Lehmann’s lower bound theory. The novel iSCLBT exhibits a significant improvement over the previous version. Both Lehmann’s theory and the SCLBT variants provide significantly better lower bounds than those obtained from Weinstein’s and Temple’s methods. Compared to each other, the Lehmann and iSCLBT theories exhibit similar performance in terms of the quality and convergence of the lower bounds. By increasing the number of states included in the calculations, the lower bounds are tighter and their quality becomes comparable with that of the Ritz upper bounds. Both methods are suitable for providing lower bounds for low-lying excited states as well. Compared to Lehmann’s theory, one of the advantages of the iSCLBT method is that it does not necessarily require the Weinstein lower bound for its initial input, but Ritz eigenvalue estimates can also be used. Especially owing to this property the iSCLBT method sometimes exhibits improved convergence compared to that of Lehmann’s lower bounds


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1729
Author(s):  
Georgios Katsouleas ◽  
Vasiliki Panagakou ◽  
Panayiotis Psarrakos

In this note, given a matrix A∈Cn×n (or a general matrix polynomial P(z), z∈C) and an arbitrary scalar λ0∈C, we show how to define a sequence μkk∈N which converges to some element of its spectrum. The scalar λ0 serves as initial term (μ0=λ0), while additional terms are constructed through a recursive procedure, exploiting the fact that each term μk of this sequence is in fact a point lying on the boundary curve of some pseudospectral set of A (or P(z)). Then, the next term in the sequence is detected in the direction which is normal to this curve at the point μk. Repeating the construction for additional initial points, it is possible to approximate peripheral eigenvalues, localize the spectrum and even obtain spectral enclosures. Hence, as a by-product of our method, a computationally cheap procedure for approximate pseudospectra computations emerges. An advantage of the proposed approach is that it does not make any assumptions on the location of the spectrum. The fact that all computations are performed on some dynamically chosen locations on the complex plane which converge to the eigenvalues, rather than on a large number of predefined points on a rigid grid, can be used to accelerate conventional grid algorithms. Parallel implementation of the method or use in conjunction with randomization techniques can lead to further computational savings when applied to large-scale matrices.


2021 ◽  
Vol 65 ◽  
pp. 681-726
Author(s):  
Fida El Chami ◽  
Nicolas Ginoux ◽  
Georges Habib

2021 ◽  
Vol 281 (2) ◽  
pp. 109040
Author(s):  
Qingchun Ji ◽  
Li Lin

2021 ◽  
Author(s):  
Miklos Ronto ◽  
Eli Pollak ◽  
Rocco Martinazzo

Abstract Ritz eigenvalues only provide upper bounds for the energy levels, while obtaining lower bounds requires at least the calculation of the variances associated with these eigenvalues. The well-known Weinstein and Temple lower bounds based on the eigenvalues and variances converge very slowly and their quality is considerably worse than that of the Ritz upper bounds. Lehmann presented a method that in principle optimizes Temple’s lower bounds with significantly improved results. We have recently formulated a Self-Consistent Lower Bound Theory (SCLBT), which improves upon Temple’s results. In this paper we further improve the SCLBT and compare its quality with Lehmann’s theory. The Lánczos algorithm for constructing the Hamiltonian matrix simplifies Lehmann’s theory and is essential for the SCLBT. Using two lattice Hamiltonians, we compared the improved SCLBT with its previous implementation as well as with Lehmann’s lower bound theory. The novel SCLBT exhibits a significant improvement over the previous version. Both Lehmann’s theory and the SCLBT provide significantly better lower bounds than those obtained from Weinstein’s and Temple’s methods. Compared to each other, the Lehmann and SCLBT theories exhibit similar performance in terms of the quality and convergence of the lower bounds. By increasing the number of states included in the calculations, the lower bounds are tighter and their quality becomes comparable with that of the Ritz upper bounds. Both methods are suitable for providing lower bounds for low-lying excited states as well. Compared to Lehmann’s theory, one of the advantages of the SCLBT method is that it does not necessarily require the Weinstein lower bound for its initial input, but Ritz eigenvalue estimates can also be used. Especially owing to this property the SCLBT method sometimes exhibits improved convergence compared to that of Lehmann’s lower bounds.


Sign in / Sign up

Export Citation Format

Share Document