continuity properties
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 46)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Vol 32 (2) ◽  
Author(s):  
Siqi Fu ◽  
Weixia Zhu

AbstractWe study spectral stability of the $${\bar{\partial }}$$ ∂ ¯ -Neumann Laplacian on a bounded domain in $${\mathbb {C}}^n$$ C n when the underlying domain is perturbed. In particular, we establish upper semi-continuity properties for the variational eigenvalues of the $${\bar{\partial }}$$ ∂ ¯ -Neumann Laplacian on bounded pseudoconvex domains in $${\mathbb {C}}^n$$ C n , lower semi-continuity properties on pseudoconvex domains that satisfy property (P), and quantitative estimates on smooth bounded pseudoconvex domains of finite D’Angelo type in $${\mathbb {C}}^n$$ C n .


Author(s):  
Francesco Marchetti ◽  
Edmondo Minisci ◽  
Annalisa Riccardi

AbstractIn this paper, the ascent trajectory optimization of a lifting body Single-Stage To Orbit (SSTO) reusable launch vehicle is investigated. The work is carried out using a Direct Multiple Shooting method to solve the Optimal Control problem. The crucial initialisation of the optimisation process is performed by using a combination of two evolutionary algorithms, namely a Multi-Objective Parzen-based Estimation of Distribution (MOPED) algorithm and a Multi-Population Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA). Multi-Objective Parzen-based Estimation of Distribution (MOPED) belongs to the class of Estimation of Distribution Algorithms (EDAs) and it is used in the first phase of the initial guess research to explore the search space, then Multi-Population Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA) is used to refine the obtained results, and better fulfill the imposed constraints. The initial guesses obtained with this evolutionary framework were tested on different multiple shooting configurations. The importance of the continuity properties of the employed mathematical models was also quantitatively addressed.


Author(s):  
Shengda Zeng ◽  
Dumitru Motreanu ◽  
Akhtar A. Khan

AbstractWe study a nonlinear evolutionary quasi–variational–hemivariational inequality (in short, (QVHVI)) involving a set-valued pseudo-monotone map. The central idea of our approach consists of introducing a parametric variational problem that defines a variational selection associated with (QVHVI). We prove the solvability of the parametric variational problem by employing a surjectivity theorem for the sum of operators, combined with Minty’s formulation and techniques from the nonsmooth analysis. Then, an existence theorem for (QVHVI) is established by using Kluge’s fixed point theorem for set-valued operators. As an application, an abstract optimal control problem for the (QVHVI) is investigated. We prove the existence of solutions for the optimal control problem and the weak sequential compactness of the solution set via the Weierstrass minimization theorem and the Kuratowski-type continuity properties.


Author(s):  
Jakub Both ◽  
Iuliu Sorin Pop ◽  
Ivan Yotov

We study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot's well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards' equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.


2021 ◽  
pp. 2250002
Author(s):  
Fumio Hiroshima ◽  
Oliver Matte

We prove the existence, uniqueness, and strict positivity of ground states of the possibly massless renormalized Nelson operator under an infrared regularity condition and for Kato decomposable electrostatic potentials fulfilling a binding condition. If the infrared regularity condition is violated, then we show non-existence of ground states of the massless renormalized Nelson operator with an arbitrary Kato decomposable potential. Furthermore, we prove the existence, uniqueness, and strict positivity of ground states of the massless renormalized Nelson operator in a non-Fock representation where the infrared condition is unnecessary. Exponential and superexponential estimates on the pointwise spatial decay and the decay with respect to the boson number for elements of spectral subspaces below localization thresholds are provided. Moreover, some continuity properties of ground state eigenvectors are discussed. Byproducts of our analysis are a hypercontractivity bound for the semigroup and a new remark on Nelson’s operator theoretic renormalization procedure. Finally, we construct path measures associated with ground states of the renormalized Nelson operator. Their analysis entails improved boson number decay estimates for ground state eigenvectors, as well as upper and lower bounds on the Gaussian localization with respect to the field variables in the ground state. As our results on uniqueness, positivity, and path measures exploit the ergodicity of the semigroup, we restrict our attention to one matter particle. All results are non-perturbative.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256470
Author(s):  
Nick Terry ◽  
Youngjun Choe

Gaussian processes offer a flexible kernel method for regression. While Gaussian processes have many useful theoretical properties and have proven practically useful, they suffer from poor scaling in the number of observations. In particular, the cubic time complexity of updating standard Gaussian process models can be a limiting factor in applications. We propose an algorithm for sequentially partitioning the input space and fitting a localized Gaussian process to each disjoint region. The algorithm is shown to have superior time and space complexity to existing methods, and its sequential nature allows the model to be updated efficiently. The algorithm constructs a model for which the time complexity of updating is tightly bounded above by a pre-specified parameter. To the best of our knowledge, the model is the first local Gaussian process regression model to achieve linear memory complexity. Theoretical continuity properties of the model are proven. We demonstrate the efficacy of the resulting model on several multi-dimensional regression tasks.


2021 ◽  
pp. 1-15
Author(s):  
TaiBen Nan ◽  
Haidong Zhang ◽  
Yanping He

The overwhelming majority of existing decision-making methods combined with the Pythagorean fuzzy set (PFS) are based on aggregation operators, and their logical foundation is imperfect. Therefore, we attempt to establish two decision-making methods based on the Pythagorean fuzzy multiple I method. This paper is devoted to the discussion of the full implication multiple I method based on the PFS. We first propose the concepts of Pythagorean t-norm, Pythagorean t-conorm, residual Pythagorean fuzzy implication operator (RPFIO), Pythagorean fuzzy biresiduum, and the degree of similarity between PFSs based on the Pythagorean fuzzy biresiduum. In addition, the full implication multiple I method for Pythagorean fuzzy modus ponens (PFMP) is established, and the reversibility and continuity properties of the full implication multiple I method of PFMP are analyzed. Finally, a practical problem is discussed to demonstrate the effectiveness of the Pythagorean fuzzy full implication multiple I method in a decision-making problem. The advantages of the new method over existing methods are also explained. Overall, the proposed methods are based on logical reasoning, so they can more accurately and completely express decision information.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiahui Mo ◽  
Huahao Shou ◽  
Wei Chen

Background: Implicit surface is a kind of surface modeling tool, which is widely used in point cloud reconstruction, deformation, and fusion due to its advantages of good smoothness and Boolean operation. The most typical method is surface reconstruction with radial basis functions (RBF) under normal constraints. RBF has become one of the main methods of point cloud fitting because it has a strong mathematical foundation, an advantage of computation simplicity, and the ability to process nonuniform points. Objective: Techniques and patents of implicit surface reconstruction interpolation with RBF are surveyed. Theory, algorithm, and application are discussed to provide a comprehensive summary for implicit surface reconstruction in RBF and Hermite radial basis functions (HRBF) interpolation. Methods: RBF implicit surface reconstruction interpolation can be divided into RBF interpolation under the constraints of points and HRBF interpolation under the constraints of points and corresponding normals. Results: A total of 125 articles were reviewed in which more than 30% were related to RBF in the last decade. The continuity properties and application fields of the popular globally supported radial basis functions and compactly supported radial basis functions are analyzed. Different methods of RBF and HRBF implicit surface reconstruction are evaluated, and the challenges of these methods are discussed. Conclusion: In future work, implicit surface reconstruction via RBF and HRBF should be further studied for fitting accuracy, computation speed, and other fundamental problems. In addition, it is a more challenging but valuable research direction to construct a new RBF with both compact support and improved fitting accuracy.


Sign in / Sign up

Export Citation Format

Share Document