A graph theoretic model to understand the behavioral difference of PPCA among its paralogs towards recognition of DXCA

2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Shankar K Ghosh ◽  
Suvankar Ghosh ◽  
Goutam Paul ◽  
Raja Banerjee
2011 ◽  
pp. 581-599
Author(s):  
Robert Gilles ◽  
Tabitha James ◽  
Reza Barkhi ◽  
Dimitrios Diamantaras

Social networks depict complex systems as graph theoretic models. The study of the formation of such systems (or networks) and the subsequent analysis of the network structures are of great interest. For information systems research and its impact on business practice, the ability to model and simulate a system of individuals interacting to achieve a certain socio-economic goal holds much promise for proper design and use of cyber networks. We use case-based decision theory to formulate a customizable model of information gathering in a social network. In this model, the agents in the network have limited awareness of the social network in which they operate and of the fixed, underlying payoff structure. Agents collect payoff information from neighbors within the prevailing social network, and they base their networking decisions on this information. Along with the introduction of the decision theoretic model, we developed software to simulate the formation of such networks in a customizable context to examine how the network structure can be influenced by the parameters that define social relationships. We present computational experiments that illustrate the growth and stability of the simulated social networks ensuing from the proposed model. The model and simulation illustrates how network structure influences agent behavior in a social network and how network structures, agent behavior, and agent decisions influence each other.


2003 ◽  
Vol 14 (02) ◽  
pp. 267-285 ◽  
Author(s):  
B. BUI XUAN ◽  
A. FERREIRA ◽  
A. JARRY

New technologies and the deployment of mobile and nomadic services are driving the emergence of complex communications networks, that have a highly dynamic behavior. This naturally engenders new route-discovery problems under changing conditions over these networks. Unfortunately, the temporal variations in the network topology are hard to be effectively captured in a classical graph model. In this paper, we use and extend a recently proposed graph theoretic model, which helps capture the evolving characteristic of such networks, in order to propose and formally analyze least cost journey (the analog of paths in usual graphs) in a class of dynamic networks, where the changes in the topology can be predicted in advance. Cost measures investigated here are hop count (shortest journeys), arrival date (foremost journeys), and time span (fastest journeys).


Author(s):  
Tanvir Singh ◽  
V.P. Agrawal

Nanotechnology can create many new nanomaterials and nanodevices with a vast range of applications, such as in medicine, electronics, biomaterials, and energy production, etc. An attempt is made to develop an integrated systems model for the structure of the nanotechnology system in terms of its constituents and interactions between the constituents and processes, etc. using graph theory and matrix algebra. The nanotechnology system is first modeled with the help of graph theory, secondly by variable adjacency matrix and thirdly by multinomial (which is known as a permanent function). The permanent function provides an opportunity to carry out a structural analysis of nanotechnology system in terms of its strength, weakness, improvement, and optimization, by correlating the different systems with its structure. The physical meaning has been associated with each term of the permanent function. Different structural attributes of the nanotechnology system are identified concurrently to reduce cost, time for design and development, and also to develop a graph-theoretic model, matrix model, and multinomial permanent model of nanotechnology system. The top-down approach for a complete analysis of any nanotechnology systems is given. The general methodology is presented for the characterization and comparison of two nanotechnology systems.


2011 ◽  
Vol 208 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Jacek Blazewicz ◽  
Edmund K. Burke ◽  
Marta Kasprzak ◽  
Alexandr Kovalev ◽  
Mikhail Y. Kovalyov

1978 ◽  
Vol 30 (2) ◽  
pp. 190-198 ◽  
Author(s):  
John N. Hoefer ◽  
David W. Bange

Sign in / Sign up

Export Citation Format

Share Document